Mariavaleria Pellicanò
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mariavaleria Pellicanò.
Mechanisms of Ageing and Development | 2009
Giuseppina Colonna-Romano; Matteo Bulati; Alessandra Aquino; Mariavaleria Pellicanò; Salvatore Vitello; Domenico Lio; Giuseppina Candore; Calogero Caruso
The T cell branch of the immune system has been extensively studied in the elderly and it is known that the elderly have impaired immune function, mainly due to the chronic antigenic load that ultimately causes shrinkage of the T cell repertoire and filling of the immunologic space with memory T cells. In the present paper, we describe the IgD(-)CD27(-) double-negative B cell population which (as we have recently described) is higher in the elderly. Most of these cells were IgG(+). Evaluation of the telomere length and expression of the ABCB1 transporter and anti-apoptotic molecule, Bcl2, shows that they have the markers of memory B cells. We also show that these cells do not act as antigen presenting cells, as indicated by the low levels of CD80 and DR, nor do they express significant levels of the CD40 molecule necessary to interact with T lymphocytes through the ligand, CD154. Hence, we hypothesize that these expanded cells are late memory or exhausted cells that have down-modulated the expression of CD27 and filled the immunologic space in the elderly. These cells might be the age-related manifestation of time-enduring stimulation or dysregulation of the immune system.
Journal of Neuroimmunology | 2012
Mariavaleria Pellicanò; Anis Larbi; David Goldeck; Giuseppina Colonna-Romano; Silvio Buffa; Matteo Bulati; Graziella Rubino; Francesco Iemolo; Giuseppina Candore; Calogero Caruso; Evelyna Derhovanessian; Graham Pawelec
Alzheimers disease (AD) is characterized by extracellular senile plaques in the brain, containing amyloid-β peptide (Aβ). We identify immunological differences between AD patients and age-matched controls greater than those related to age itself. The biggest differences were in the CD4+ rather than the CD8+ T cell compartment resulting in lower proportions of naïve cells, more late-differentiated cells and higher percentages of activated CD4+CD25+ T cells without a Treg phenotype in AD patients. Changes to CD4+ cells might be the result of chronic stimulation by Aβ present in the blood. These findings have implications for diagnosis and understanding the aetiology of the disease.
Rejuvenation Research | 2010
Giuseppina Candore; Matteo Bulati; Calogero Caruso; Laura Castiglia; Giuseppina Colonna-Romano; Danilo Di Bona; Giovanni Duro; Domenico Lio; Domenica Matranga; Mariavaleria Pellicanò; Claudia Rizzo; Giovanni Scapagnini; Sonya Vasto
Alzheimer disease (AD) is a heterogeneous and progressive neurodegenerative disease, which in Western society mainly accounts for senile dementia. Today many countries have rising aging populations and are facing an increased prevalence of age-related diseases, such as AD, with increasing health-care costs. Understanding the pathophysiology process of AD plays a prominent role in new strategies for extending the health of the elderly population. Considering the future epidemic of AD, prevention and treatment are important goals of ongoing research. However, a better understanding of AD pathophysiology must be accomplished to make this objective feasible. In this paper, we review some hot topics concerning AD pathophysiology that have an important impact on therapeutic perspectives. Hence, we have focused our attention on inflammation, cytokines, immune response, apolipoprotein E (APOE), cholesterol, oxidative stress, as well as exploring the related therapeutic possibilities, i.e., nonsteroidal antiinflammatory drugs, cytokine blocking antibodies, immunotherapy, diet, and curcumin.
Biogerontology | 2011
Silvio Buffa; Matteo Bulati; Mariavaleria Pellicanò; Deborah K. Dunn-Walters; Yu-Chang Wu; Giuseppina Candore; Salvatore Vitello; Calogero Caruso; Giuseppina Colonna-Romano
Elderly people show a reduced protection against new infections and a decreased response to vaccines as a consequence of impairment of both cellular and humoral immunity. In this paper we have studied memory/naïve B cells in the elderly, evaluating surface immunoglobulin expression, production of the pro- and anti-inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-10, and presence of somatic hypermutation, focusing on the IgG+IgD−CD27− double negative (DN) B cells that are expanded in the elderly. Our results show that naïve B cells from young donors need a sufficiently strong stimulus to be activated “in vitro”, while naïve B cells from old subjects are able to produce IL-10 and TNF-α when stimulated “physiologically” (α-CD40/IL-4), suggesting that these cells might play a role in the control of the immuno-inflammatory environment in the elderly. In addition, in the elderly there is an accumulation of DN B cells with a reduced rate of somatic hypermutation. Thus, DN B lymphocytes may be exhausted cells that are expanded and accumulate as a by-product of persistent stimulation or impaired germinal center formation.
Journal of Alzheimer's Disease | 2010
Mariavaleria Pellicanò; Matteo Bulati; Silvio Buffa; Mario Barbagallo; Anna Di Prima; Gabriella Misiano; Pasquale Picone; Marta Di Carlo; Domenico Nuzzo; Giuseppina Candore; Sonya Vasto; Domenico Lio; Calogero Caruso; Giuseppina Colonna-Romano
To investigate the systemic signs of immune-inflammatory responses in Alzheimers disease (AD), in the present study we have analyzed blood lymphocyte subsets and the expression of activation markers on peripheral blood mononuclear cells (PBMCs) from AD patients and age-matched healthy controls (HC) activated in vitro by recombinant amyloid-beta peptide (rAbeta42). Our study of AD lymphocyte subpopulations confirms the already described decrease of the absolute number and percentage of B cells when compared to HC lymphocytes, whereas the other subsets are not significantly different in patients and controls. We report the increased expression of the activation marker CD69 and of the chemokine receptors CCR2 and CCR5 on T cells but no changes of CD25 after activation. B cells are also activated by rAbeta42 as demonstrated by the enhanced expression of CCR5. Moreover, rAbeta42 induces an increased expression of the scavenger receptor CD36 on monocytes. Some activation markers and chemokine receptors are overexpressed in unstimulated AD cells when compared to controls. This is evidence of the pro-inflammatory status of AD. Stimulation by rAbeta42 also induces the production of the pro-inflammatory cytokines IL-1beta, IL-6, IFN-gamma, and TNF-alpha, and of the anti-inflammatory cytokines IL-10 and IL-1Ra. The chemokines RANTES, MIP-1beta, and eotaxin as well as some growth factors (GM-CSF, G-CSF) are also overproduced by AD-derived PBMC activated by rAbeta42. These results support the involvement of systemic immunity in AD patients. However, our study is an observational one so we cannot draw a conclusion about its contribution to the pathophysiology of the disease.
Ageing Research Reviews | 2011
Matteo Bulati; Silvio Buffa; Giuseppina Candore; Calogero Caruso; Deborah K. Dunn-Walters; Mariavaleria Pellicanò; Yu-Chang Wu; Giuseppina Colonna Romano
Immunosenescence contributes to the decreased ability of the elderly to control infectious diseases, which is also reflected in their generally poor response to new antigens and vaccination. It is known that the T cell branch of the immune system is impaired in the elderly mainly due to expansion of memory/effector cells that renders the immune system less able to respond to new antigens. B lymphocytes are also impaired in the elderly in terms of their response to new antigens. In this paper we review recent work on B cell immunosenescence focusing our attention on memory B cells and a subset of memory B cells (namely IgG(+)IgD(-)CD27(-)) that we have demonstrated is increased in healthy elderly.
Current Pharmaceutical Design | 2010
Giuseppina Colonna-Romano; Silvio Buffa; Matteo Bulati; Giuseppina Candore; Domenico Lio; Mariavaleria Pellicanò; Sonya Vasto; Caruso C
Immunosenescence is considered a major contributory factor to the increased frequency of morbidity and mortality among elderly. On the other hand centenarians are considered the best example of successful ageing. To gain insight into mechanisms of immunosenescence and its clinical relevance, a possible model is represented by centenarians and/or their offspring. Nowadays centenarians are not more a curiosity, but in Europe are 1/8000 inhabitants and it has been demonstrated that the centenarian offspring, who are typically in their 70s and 80s, have a survival advantage when compared with age-matched controls whose parents died at an average life expectancy. Then again, studies on immunosenescence focus mainly on T cell impairment, although B cells are also affected. So, in the present preliminary report, we have studied B cell compartment in two classes of individuals, old people and centenarian offspring. B cell compartment was analysed using IgD and CD27 antibodies which characterize naïve B cells (IgD(+) CD27(-)), memory unswitched B cells (IgD(+)CD27(+)), memory switched B cells(IgD(-)CD27(+)) and double negative B cells (DN) (IgD(-)CD27(-)), i.e. exhausted memory cells. As expected, in both cohorts we observed a decreased B cell count. However, in centenarian offspring, naïve B cells are more abundant whereas exhausted memory cells (DN B cells, IgD(-)CD27(-)) do not show the increase that we have previously demonstrated in healthy elderly donors. These data are similar to that found in previously experiments on young subjects. So, our preliminary results show that centenarian offspring do not have the typical trend of memory/naive B cell subsets observed in elderly people and this is in agreement with the higher levels of IgM in the serum of centenarian offspring in comparison with data obtained in age-matched controls. This reservoir of naive B cell might be one of the causes that make centenarian offspring able to keep fighting off new infections, hence prolonging their life. So, B cell subset changes could represent a hallmark of successful or unsuccessful ageing and could be used as a biomarker of human life span, potentially useful for the evaluation of anti-ageing treatment.
Current Pharmaceutical Design | 2010
D. Di Bona; Giovanni Scapagnini; Giuseppina Candore; Laura Castiglia; Giuseppina Colonna-Romano; Giovanni Duro; Domenico Nuzzo; Francesco Iemolo; Domenico Lio; Mariavaleria Pellicanò; Valeria Scafidi; Calogero Caruso; Sonya Vasto
Alzheimers disease (AD) is a heterogeneous and progressive neurodegenerative disease which in Western society mainly accounts for clinical dementia. AD has been linked to inflammation and oxidative stress. Neuro-pathological hallmarks are senile plaques, resulting from the accumulation of several proteins and an inflammatory reaction around deposits of amyloid, a fibrillar protein, Abeta, product of cleavage of a much larger protein, the beta-amyloid precursor protein (APP) and neurofibrillary tangles. Inflammation clearly occurs in pathologically vulnerable regions of AD and several inflammatory factors influencing AD development, i.e. environmental factors (pro-inflammatory phenotype) and/or genetic factors (pro-inflammatory genotype) have been described. Irrespective of the source and mechanisms that lead to the generation of reactive oxygen species, mammalian cells have developed highly regulated inducible defence systems, whose cytoprotective functions are essential in terms of cell survival. When appropriately activated, each one of these systems has the possibility to restore cellular homeostasis and rebalance redox equilibrium. Increasing evidence, support the notion that reduction of cellular expression and activity of antioxidant proteins and consequent augment of oxidative stress are fundamental causes for ageing processes and neurodegenerative diseases., including AD. The better understanding of different molecular and cellular inflammatory mechanisms is crucial for complete knowledge of AD pathophysiology, hence for its prevention and drug therapy. Accordingly, two lines of preventive therapeutics can be outlined, the first based on anti-inflammatory drugs, the second one on anti-oxidative properties.
Longevity & Healthspan | 2012
Adriana Martorana; Matteo Bulati; Silvio Buffa; Mariavaleria Pellicanò; Calogero Caruso; Giuseppina Candore; Giuseppina Colonna-Romano
Ageing impacts negatively on the development of the immune system and its ability to fight pathogens. Progressive changes in the T-cell and B-cell systems over the lifespan of individuals have a major impact on the capacity to respond to immune challenges. The cumulative age-associated changes in immune competence are termed immunosenescence that is characterized by changes where adaptive immunity deteriorates, while innate immunity is largely conserved or even upregulated with age. On the other hand, ageing is also characterized by “inflamm-ageing”, a term coined to explain the inflammation commonly present in many age-associated diseases. It is believed that immune inflammatory processes are relevant in Alzheimer’s disease, the most common cause of dementia in older people. In the present paper we review data focusing on changes of some immunoinflammatory parameters observed in patients affected by Alzheimer’s disease.
Age | 2013
Silvio Buffa; Mariavaleria Pellicanò; Matteo Bulati; Adriana Martorana; David Goldeck; Calogero Caruso; Graham Pawelec; Giuseppina Colonna-Romano
The B cell arm of adaptive immunity undergoes significant modifications with age. Elderly people are characterized by impaired B cell responses reflected in a reduced ability to effectively respond against viruses and bacteria. Alterations of immunity with advancing age (immunosenescence) have been widely studied in centenarians who are considered a good example of successful aging. In recent years, attention has shifted to centenarian offspring (CO) as a model of people genetically advantaged for healthy aging and longevity. Here, we describe the preliminary characterization of a proposed new population of memory B cells, defined as CD19+CD38−CD24−, which we find at higher frequencies in the elderly but less so in CO than healthy age-matched random controls. In addition, we found a decreased expression of RP105 (CD180), a toll-like receptor-associated molecule, on these cells. CD180 downregulation may potentially be a marker of immunosenescence. Moreover, we show that these CD19+CD38−CD24− B cells produce TNF and hypothesize that their observed expansion in the elderly might contribute to the increased inflammatory status sometimes designated “inflamm-aging.”