Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maribel Bruno is active.

Publication


Featured researches published by Maribel Bruno.


Proteomics | 2011

Proteome profiling reveals potential toxicity and detoxification pathways following exposure of BEAS-2B cells to engineered nanoparticle titanium dioxide†

Yue Ge; Maribel Bruno; Kathleen Wallace; Witold Winnik; Raju Y. Prasad

Oxidative stress is known to play important roles in engineered nanomaterial‐induced cellular toxicity. However, the proteins and signaling pathways associated with the engineered nanomaterial‐mediated oxidative stress and toxicity are largely unknown. To identify these toxicity pathways and networks that are associated with exposure to engineered nanomaterials, an integrated proteomic study was conducted using human bronchial epithelial cells, BEAS‐2B and nanoscale titanium dioxide. Utilizing 2‐DE and MS, we identified 46 proteins that were altered at protein expression levels. The protein changes detected by 2‐DE/MS were verified by functional protein assays. These identified proteins include some key proteins involved in cellular stress response, metabolism, adhesion, cytoskeletal dynamics, cell growth, cell death, and cell signaling. The differentially expressed proteins were mapped using Ingenuity Pathway Analyses™ canonical pathways and Ingenuity Pathway Analyses tox lists to create protein‐interacting networks and proteomic pathways. Twenty protein canonical pathways and tox lists were generated, and these pathways were compared to signaling pathways generated from genomic analyses of BEAS‐2B cells treated with titanium dioxide. There was a significant overlap in the specific pathways and lists generated from the proteomic and the genomic data. In addition, we also analyzed the phosphorylation profiles of protein kinases in titanium dioxide‐treated BEAS‐2B cells for a better understanding of upstream signaling pathways in response to the titanium dioxide treatment and the induced oxidative stress. In summary, the present study provides the first protein‐interacting network maps and novel insights into the biological responses and potential toxicity and detoxification pathways of titanium dioxide.


Journal of Pharmacology and Experimental Therapeutics | 2006

Alterations in the Rat Serum Proteome During Liver Injury from Acetaminophen Exposure

B. Alex Merrick; Maribel Bruno; Jennifer H. Madenspacher; Barbara A. Wetmore; Julie F. Foley; Rembert Pieper; Ming Zhao; Anthony J. Makusky; Andrew M. McGrath; Jeff Zhou; John L. Taylor; Kenneth B. Tomer

Changes in the serum proteome were identified during early, fulminant, and recovery phases of liver injury from acetaminophen in the rat. Male F344 rats received a single, noninjury dose or a high, injury-producing dose of acetaminophen for evaluation at 6 to 120 h. Two-dimensional gel electrophoresis of immunodepleted serum separated approximately 800 stained proteins per sample from which differentially expressed proteins were identified by mass spectrometry. Serum alanine aminotransferase/aspartate aminotransferase levels and histopathology revealed the greatest liver damage at 24 and 48 h after high-dose acetaminophen corresponding to the time of greatest serum protein alterations. After 24 h, 68 serum proteins were significantly altered of which 23 proteins were increased by >5-fold and 20 proteins were newly present compared with controls. Only minimal changes in serum proteins were noted at the low dose without any histopathology. Of the 54 total protein isoforms identified by mass spectrometry, gene ontology processes for 38 unique serum proteins revealed involvement of acute phase response, coagulation, protein degradation, intermediary metabolism, and various carrier proteins. Elevated serum tumor necrosis factor-α from 24 to 48 h suggested a mild inflammatory response accompanied by increased antioxidant capability demonstrated by increased serum catalase activity. Antibody array and enzyme-linked immunosorbent assay analyses also showed elevation in the chemokine monocyte chemoattractant protein-1 and the metalloprotease inhibitor tissue inhibitor of metalloproteinases-1 during this same period of liver injury. This study demonstrates that serum proteome alterations probably reflect both liver damage and a concerted, complex response of the body for organ repair and recovery during acute hepatic injury.


Journal of Proteome Research | 2009

Protein Carbonyl Formation in Response to Propiconazole-Induced Oxidative Stress

Maribel Bruno; Tanya Moore; Stephen Nesnow; Yue Ge

Propiconazole, a widely used fungicide, is hepatotoxic and hepatotumorigenic in mice. Previous genomic analysis of liver tissues from propiconazole-treated mice identified genes and pathways involved in oxidative stress, suggesting that oxidative stress may play a role in propiconazole-induced toxicity. To understand the contribution of oxidative stress on toxicity at the protein level, we developed an integrated approach for the systematic measurement of protein oxidation in the livers from propiconazole-treated mice. Liver protein carbonylation increased significantly after treatment with propiconazole, demonstrating propiconazole-associated induction of oxidative stress. Utilizing two-dimensional gel electrophoresis (2-DE), immunoblotting, and mass spectrometry, we identified 17 carbonylated proteins that were altered with varying intensities by propiconazole treatment. The potential effects of protein carbonylation on protein functions and cellular activities in the liver of propiconazole-treated mice were further investigated. A significant negative correlation between protein carbonylation and cytochrome c reductase activity was found. We conclude that glycolysis, mitochondrial respiratory chain, ATP production, amino acid metabolism, CO2 hydration, cellular antioxidant defense and detoxification system, and tetrahydrobiopterin pathways are affected by oxygen radicals in the livers of propiconazole-treated mice. This study suggests a mode of propiconazole-induced toxicity in mouse liver which primarily involves oxidative damage to cellular proteins.


Journal of Proteome Research | 2010

Proteomic Analysis of Propiconazole Responses in Mouse Liver: Comparison of Genomic and Proteomic Profiles

Pedro Ortiz; Maribel Bruno; Tanya Moore; Stephen Nesnow; Witold Winnik; Yue Ge

We have performed for the first time a comprehensive profiling of changes in protein expression of soluble proteins in livers from mice treated with the mouse liver tumorigen, propiconazole, to uncover the pathways and networks altered by this fungicide. Utilizing two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), we identified 62 proteins that were altered. Several of these protein changes detected by 2-DE/MS were verified by Western blot analyses. These differentially expressed proteins were mapped using Ingenuity Pathway Analyses (IPA) canonical pathways and IPA tox lists. Forty-four pathways/lists were identified. IPA was also used to create networks of interacting protein clusters. The protein-generated IPA canonical pathways and IPA tox lists were compared to those pathways and lists previously generated from genomic analyses from livers of mice treated with propiconazole under the same experimental conditions. There was a significant overlap in the specific pathways and lists generated from the proteomic and the genomic data with 27 pathways common to both proteomic and genomic analyses. However, there were also 17 pathways/lists identified only by proteomics analysis and 21 pathways/lists only identified by genomic analysis. The protein network analysis produced interacting subnetworks centered around hepatocyte nuclear factor 4 alpha (HNF4 alpha), MYC, proteasome subunit type 4 alpha, and glutathione S-transferase (GST). The HNF4 alpha network hub was also identified by genomic analysis. Five GST isoforms were identified by proteomic analysis and GSTs were present in 10 of the 44 protein-based pathways/lists. Hepatic GST activities were compared between mice treated with propiconazole and 2 additional conazoles and higher GST activities were found to be associated with the tumorigenic conazoles. Overall, this comparative proteomic and genomic study has revealed a series of alterations in livers induced by propiconazole: nuclear receptor activation, metabolism of xenobiotics, metabolism of biochemical intermediates, biosynthesis of biochemical intermediates, and oxidative stress in mouse liver. The present study provides novel insights into toxic mechanisms and/or modes of action of propiconazole which are required for human health risk assessment of this environmental chemical.


Chemico-Biological Interactions | 2011

Propiconazole increases reactive oxygen species levels in mouse hepatic cells in culture and in mouse liver by a cytochrome P450 enzyme mediated process.

Stephen Nesnow; Rachel D. Grindstaff; Guy R. Lambert; William T. Padgett; Maribel Bruno; Yue Ge; Pei-Jen Chen; Charles E. Wood; Lynea Murphy

Propiconazole induces hepatocellular carcinomas and hepatocellular adenomas in mice and promotes liver tumors in rats. Transcriptional, proteomic, metabolomic and biochemical studies of hepatic tissues from mice treated with propiconazole under the conditions of the chronic bioassay indicated that propiconazole induced oxidative stress. Here we sought to identify the source of the reactive oxygen species (ROS) induced by propiconazole using both AML12 immortalized mouse hepatocytes in culture and liver tissues from mice. We also sought to further characterize the nature and effects of ROS formation induced by propiconazole treatment in mouse liver. ROS was induced in AML12 cells by propiconazole as measured by fluorescence detection and its formation was ameliorated by N-acetylcysteine. Propiconazole induced glutathione-S-transferase (GSTα) protein levels and increased the levels of thiobarbituric acid reactive substances (TBARS) in AML12 cells. The TBARS levels were decreased by diphenylene iodonium chloride (DPIC), a cytochrome P450 (CYP) reductase inhibitor revealing the role of CYPs in ROS generation. It has been previously reported that Cyp2b and Cyp3a proteins were induced in mouse liver by propiconazole and that Cyp2b and Cyp3a proteins undergo uncoupling of their CYP catalytic cycle releasing ROS. Therefore, salicylic acid hydroxylation was used as probe for ROS formation using microsomes from mice treated with propiconazole. These studies showed that levels of 2,3-dihydroxybenzoic acid (an ROS derived metabolite) were decreased by ketoconazole, melatonin and DPIC. In vivo, propiconazole increased hepatic malondialdehyde levels and GSTα protein levels and had no effect on hepatic catalase or superoxide dismutase activities. Based on these observations we conclude that propiconazole induces ROS in mouse liver by increasing CYP protein levels leading to increased ROS levels. Our data also suggest that propiconazole induces the hydroxyl radical as a major ROS form.


Journal of Proteome Research | 2015

Systematic proteomic approach to characterize the impacts of chemical interactions on protein and cytotoxicity responses to metal mixture exposures.

Yue Ge; Maribel Bruno; Kathleen Wallace; Sharon Leavitt; Debora L. Andrews; Maria A. Spassova; Mingyu Xi; Anindya Roy; Najwa Haykal-Coates; William Lefew; Adam Swank; Witold Winnik; Chao Chen; Jonne Woodard; Aimen K. Farraj; Kevin Y. Teichman; Jeffrey Ross

Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-2B cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1α is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of metal and other chemical mixtures.


Toxicological Sciences | 2017

Editor’s Highlight: Mechanistic Toxicity Tests Based on an Adverse Outcome Pathway Network for Hepatic Steatosis

Michelle M. Angrish; Charlene A. McQueen; Elaine Cohen-Hubal; Maribel Bruno; Yue Ge; Brian N. Chorley

Risk assessors use liver endpoints in rodent toxicology studies to assess the safety of chemical exposures. Yet, rodent endpoints may not accurately reflect human responses. For this reason and others, human-based invitro models are being developed and anchored to adverse outcome pathways to better predict adverse human health outcomes. Here, a networked adverse outcome pathway-guided selection of biology-based assays for lipid uptake, lipid efflux, fatty acid oxidation, and lipid accumulation were developed. These assays were evaluated in a metabolically competent human hepatocyte cell model (HepaRG) exposed to compounds known to cause steatosis (amiodarone, cyclosporine A, and T0901317) or activate lipid metabolism pathways (troglitazone, Wyeth-14,643, and 22(R)-hydroxycholesterol). All of the chemicals activated at least one assay, however, only T0901317 and cyclosporin A dose-dependently increased lipid accumulation. T0901317 and cyclosporin A increased fatty acid uptake, decreased lipid efflux (inferred from apolipoprotein B100 levels), and increased fatty acid synthase protein levels. Using this biologically-based evaluation of key events regulating hepatic lipid levels, we demonstrated dysregulation of compensatory pathways that normally balance hepatic lipid levels. This approach may provide biological plausibility and data needed to increase confidence in linking invitro-based measurements to chemical effects on adverse human health outcomes.


Toxicology Letters | 2016

Proteomic responses of BEAS-2B cells to nontoxic and toxic chromium: Protein indicators of cytotoxicity conversion

Maribel Bruno; Jeffrey Ross; Yue Ge

Hexavalent chromium (Cr (VI)) is an environmental human carcinogen which primarily targets lungs. Among a variety of toxic mechanisms, disruption of biological pathways via translational and post-translational modifications represents a key mechanism through which Cr (VI) induces cytotoxicity and carcinogenesis. To identify those disruptions which are altered in response to cytotoxic Cr (VI) exposures, we measured and compared cytotoxicity and changes in expression and phosphorylation status of 15 critical biochemical pathway regulators in human BEAS-2B cells exposed for 48h to a non-toxic concentration (0.3μM) and a toxic concentration (1.8μM) of Cr (VI) by ELISA techniques. In addition, 43 functional proteins which may be altered in response to pathway signaling changes were identified using two dimensional electrophoresis (2-DE) and mass spectrometry. The proteins and fold changes observed in cells exposed to the non-toxic dose of Cr (VI) (0.3μM) were not necessarily the same as those found in the toxic one (1.8μM). A subset of signaling proteins that were correlated with the cytotoxic responses of human BEAS-2B cells to Cr (VI) treatments were identified. These proteins include regulators of glycolysis, glycogen synthase kinase 3 beta (GSK3β) and phosphoprotein 70 ribosomal protein s6 kinase (p70S6K), a signaling protein associated with oxidative stress and inflammation responses, JNK and metal regulatory transcription factor 1 (MTF-1), and a source of ubiquitin for signaling targeted protein degradation, polyubiquitin C (UBC). In addition, two dimensional gel electrophoresis (2-DE) was applied to identify key alterations in biochemical pathways differentiating between cytotoxic and non-cytotoxic exposures to Cr (VI), including glycolysis and gluconeogenesis, protein degradation, inflammation, and oxidative stress.


Computational Toxicology | 2017

Chemical-agnostic hazard prediction: Statistical inference of in vitro toxicity pathways from proteomics responses to chemical mixtures

Jeffrey Ross; Barbara Jane George; Maribel Bruno; Yue Ge

Toxicity pathways have been defined as normal cellular pathways that, when sufficiently perturbed as a consequence of chemical exposure, lead to an adverse outcome. If an exposure alters one or more normal biological pathways to an extent that leads to an adverse toxicity outcome, a significant correlation must exist between the exposure, the extent of pathway alteration, and the degree of adverse outcome. Biological pathways are regulated at multiple levels, including transcriptional, post-transcriptional, post-translational, and targeted degradation, each of which can affect the levels and extents of modification of proteins involved in the pathways. Significant alterations of toxicity pathways resulting from changes in regulation at any of these levels therefore are likely to be detectable as alterations in the proteome. We hypothesize that significant correlations between exposures, adverse outcomes, and changes in the proteome have the potential to identify putative toxicity pathways, facilitating selection of candidate targets for high throughput screening, even in the absence of a priori knowledge of either the specific pathways involved or the specific agents inducing the pathway alterations. We explored this hypothesis in vitro in BEAS-2B human airway epithelial cells exposed to different concentrations of Ni2+, Cd2+, and Cr6+, alone and in defined mixtures. Levels and phosphorylation status of a variety of signaling pathway proteins and cytokines were measured after 48 hours exposure, together with cytotoxicity. Least Absolute Shrinkage and Selection Operator (LASSO) multiple regression was used to identify a subset of these proteins that constitute a putative toxicity pathway capable of predicting cytotoxicity. The putative toxicity pathway for cytotoxicity of these metals and metal mixtures identified by LASSO is composed of phospho-RPS6KB1, phospho-p53, cleaved CASP3, phospho-MAPK8, IL-10, and Hif-1α. As this approach does not depend on knowledge of the chemical composition of the mixtures, it may be generally useful for identifying sets of proteins predictive of adverse effects for a variety of mixtures, including complex environmental mixtures of unknown composition.


Reference Module in Earth Systems and Environmental Sciences#R##N#Encyclopedia of Environmental Health | 2011

Toxicoproteomic Applications to Environmental Health and Diseases

Yue Ge; Maribel Bruno; Jeffrey Ross

Toxicoproteomics, resulting from the merging of conventional toxicology with functional proteomics, is the use of proteomics technologies to better understand the interplay between environmental and genetic factors, toxic mechanisms and modes of action of environmental chemicals, and the development of diseases or other adverse health effects caused or influenced by exposure to toxicants. It aims to study the response of a whole proteome of cells or tissues to the toxicants, especially environmental chemicals. The use of toxicoproteomics to identify key biochemical pathways, toxicity mechanisms, and biomarkers of exposure and effects is a useful tool for gaining a better understanding of the etiology of environmental diseases and accurately assessing the risk of environmental chemical exposures to human health. This article provides an overview of toxicoproteomics from an environmental health perspective. Key toxicoproteomic technologies and approaches such as two-dimensional gel electrophoresis, mass spectrometry, protein expression profiling, and identification of protein posttranslational modifications are described, and examples of the application of these technologies and methods to understanding adverse health effects of environmental chemical exposures are presented. Opportunities for future, more extensive applications of toxicoproteomics to studies of environmental health and disease are also discussed.

Collaboration


Dive into the Maribel Bruno's collaboration.

Top Co-Authors

Avatar

Yue Ge

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Ross

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

B. Alex Merrick

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Richard S. Paules

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen Nesnow

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Witold Winnik

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kenneth B. Tomer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stella O. Sieber

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tanya Moore

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Barbara A. Wetmore

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge