Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maricica Pacurari is active.

Publication


Featured researches published by Maricica Pacurari.


Particle and Fibre Toxicology | 2009

Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling

Patrick L. Apopa; Yong-Gang Qian; Rong Shao; Nancy Lan Guo; Diane Schwegler-Berry; Maricica Pacurari; Dale W. Porter; Xianglin Shi; Val Vallyathan; Vincent Castranova; Daniel C. Flynn

BackgroundEngineered iron nanoparticles are being explored for the development of biomedical applications and many other industry purposes. However, to date little is known concerning the precise mechanisms of translocation of iron nanoparticles into targeted tissues and organs from blood circulation, as well as the underlying implications of potential harmful health effects in human.ResultsThe confocal microscopy imaging analysis demonstrates that exposure to engineered iron nanoparticles induces an increase in cell permeability in human microvascular endothelial cells. Our studies further reveal iron nanoparticles enhance the permeability through the production of reactive oxygen species (ROS) and the stabilization of microtubules. We also showed Akt/GSK-3β signaling pathways are involved in iron nanoparticle-induced cell permeability. The inhibition of ROS demonstrate ROS play a major role in regulating Akt/GSK-3β – mediated cell permeability upon iron nanoparticle exposure. These results provide new insights into the bioreactivity of engineered iron nanoparticles which can inform potential applications in medical imaging or drug delivery.ConclusionOur results indicate that exposure to iron nanoparticles induces an increase in endothelial cell permeability through ROS oxidative stress-modulated microtubule remodeling. The findings from this study provide new understandings on the effects of nanoparticles on vascular transport of macromolecules and drugs.


Environmental Health Perspectives | 2008

Raw Single-Wall Carbon Nanotubes Induce Oxidative Stress and Activate MAPKs, AP-1, NF-κB, and Akt in Normal and Malignant Human Mesothelial Cells

Maricica Pacurari; Xuejun J. Yin; Jinshun Zhao; Ming Ding; Steve Leonard; Diane Schwegler-Berry; Barbara S. Ducatman; Deborah C. Sbarra; Mark D. Hoover; Vincent Castranova; Val Vallyathan

Background Single-wall carbon nanotubes (SWCNTs), with their unique physicochemical and mechanical properties, have many potential new applications in medicine and industry. There has been great concern subsequent to preliminary investigations of the toxicity, biopersistence, pathogenicity, and ability of SWCNTs to translocate to subpleural areas. These results compel studies of potential interactions of SWCNTs with mesothelial cells. Objective Exposure to asbestos is the primary cause of malignant mesothelioma in 80–90% of individuals who develop the disease. Because the mesothelial cells are the primary target cells of asbestos-induced molecular changes mediated through an oxidant-linked mechanism, we used normal mesothelial and malignant mesothelial cells to investigate alterations in molecular signaling in response to a commercially manufactured SWCNT. Methods In the present study, we exposed mesothelial cells to SWCNTs and investigated reactive oxygen species (ROS) generation, cell viability, DNA damage, histone H2AX phosphorylation, activation of poly(ADP-ribose) polymerase 1 (PARP-1), stimulation of extracellular signal-regulated kinase (ERKs), Jun N-terminal kinases (JNKs), protein p38, and activation of activator protein-1 (AP-1), nuclear factor κB (NF-κB), and protein serine-threonine kinase (Akt). Results Exposure to SWCNTs induced ROS generation, increased cell death, enhanced DNA damage and H2AX phosphorylation, and activated PARP, AP-1, NF-κB, p38, and Akt in a dose-dependent manner. These events recapitulate some of the key molecular events involved in mesothelioma development associated with asbestos exposure. Conclusions The cellular and molecular findings reported here do suggest that SWCNTs can cause potentially adverse cellular responses in mesothelial cells through activation of molecular signaling associated with oxidative stress, which is of sufficient significance to warrant in vivo animal exposure studies.


Journal of Toxicology and Environmental Health | 2010

Single- and Multi-Wall Carbon Nanotubes Versus Asbestos: Are the Carbon Nanotubes a New Health Risk to Humans?

Maricica Pacurari; Vince Castranova; Val Vallyathan

Carbon nanotubes (CNT), since their discovery, have become one of the most promising nanomaterials in many industrial and biomedical applications. Due to their unique physicochemical properties, interest is growing in the manufacture of CNT-based products and their subsequent marketing. Since their discovery, the prospect of possible undesirable human health effects has been a focus of many scientific studies. Although CNT possess unique physical properties that include (1) nanoscale diameter, (2) a wide length distribution ranging from tens of nanometers to several micrometers, and (3) high aspect ratio, the fibrous-like shape and durability suggest that their toxic properties may be analogous to those observed with other fibrous particles, such as asbestos. The present study provides a summary of published findings on CNT bioactivity, such as the potential of CNT, especially of multi-wall carbon nanotubes (MWCNT), to activate signaling pathways modulating transcription factor activity, induce apoptosis, induce DNA damage, and initiate biological responses. Assessment of risks to human health and adoption of appropriate exposure controls is critical for the safe and successful introduction of CNT -based products for future applications.


Journal of Toxicology and Environmental Health | 2012

Cell Permeability, Migration, and Reactive Oxygen Species Induced by Multiwalled Carbon Nanotubes in Human Microvascular Endothelial Cells

Maricica Pacurari; Yong Qian; W. Fu; Diane Schwegler-Berry; Min Ding; Vincent Castranova; Nancy Lan Guo

Multiwalled carbon nanotubes (MWCNT) have elicited great interest in biomedical applications due to their extraordinary physical, chemical, and optical properties. Intravenous administration of MWCNT-based medical imaging agents and drugs in animal models was utilized. However, the potential harmful health effects of MWCNT administration in humans have not yet been elucidated. Furthermore, to date, there are no apparent reports regarding the precise mechanisms of translocation of MWCNT into target tissues and organs from blood circulation. This study demonstrates that exposure to MWCNT leads to an increase in cell permeability in human microvascular endothelial cells (HMVEC). The results obtained from this study also showed that the MWCNT-induced rise in endothelial permeability is mediated by reactive oxygen species (ROS) production and actin filament remodeling. In addition, it was found that MWCNT promoted cell migration in HMVEC. Mechanistically, MWCNT exposure elevated the levels of monocyte chemoattractant protein-1 (MCP-1) and intercellular adhesion molecule 1 (ICAM-1) in HMVEC. Taken together, these results provide new insights into the bioreactivity of MWCNT, which may have implications in the biomedical application of MWCNT in vascular targeting, imaging, and drug delivery. The results generated from this study also elucidate the potential adverse effects of MWCNT exposure on humans at the cellular level.


International Journal of Oncology | 2013

The microRNA-200 family targets multiple non-small cell lung cancer prognostic markers in H1299 cells and BEAS-2B cells

Maricica Pacurari; Joseph B. Addison; Naveen Bondalapati; Ying-Wooi Wan; Dajie Luo; Yong Qian; Vincent Castranova; Alexey V. Ivanov; Nancy Lan Guo

Lung cancer remains the leading cause of cancer-related mortality for both men and women. Tumor recurrence and metastasis is the major cause of lung cancer treatment failure and death. The microRNA-200 (miR-200) family is a powerful regulator of the epithelial-mesenchymal transition (EMT) process, which is essential in tumor metastasis. Nevertheless, miR-200 family target genes that promote metastasis in non-small cell lung cancer (NSCLC) remain largely unknown. Here, we sought to investigate whether the microRNA-200 family regulates our previously identified NSCLC prognostic marker genes associated with metastasis, as potential molecular targets. Novel miRNA targets were predicted using bioinformatics tools based on correlation analyses of miRNA and mRNA expression in 57 squamous cell lung cancer tumor samples. The predicted target genes were validated with quantitative RT-PCR assays and western blot analysis following re-expression of miR-200a, -200b and -200c in the metastatic NSCLC H1299 cell line. The results show that restoring miR-200a or miR-200c in H1299 cells induces downregulation of DLC1, ATRX and HFE. Reinforced miR-200b expression results in downregulation of DLC1, HNRNPA3 and HFE. Additionally, miR-200 family downregulates HNRNPR3, HFE and ATRX in BEAS-2B immortalized lung epithelial cells in quantitative RT-PCR and western blot assays. The miR-200 family and these potential targets are functionally involved in canonical pathways of immune response, molecular mechanisms of cancer, metastasis signaling, cell-cell communication, proliferation and DNA repair in Ingenuity pathway analysis (IPA). These results indicate that re-expression of miR-200 downregulates our previously identified NSCLC prognostic biomarkers in metastatic NSCLC cells. These results provide new insights into miR-200 regulation in lung cancer metastasis and consequent clinical outcome, and may provide a potential basis for innovative therapeutic approaches for the treatment of this deadly disease.


Journal of Toxicology and Environmental Health | 2012

Multiwalled Carbon Nanotube-Induced Gene Signatures in the Mouse Lung: Potential Predictive Value for Human Lung Cancer Risk and Prognosis

Nancy Lan Guo; Ying-Wooi Wan; James Denvir; Dale W. Porter; Maricica Pacurari; Michael G. Wolfarth; Vincent Castranova; Yong Qian

Concerns over the potential for multiwalled carbon nanotubes (MWCNT) to induce lung carcinogenesis have emerged. This study sought to (1) identify gene expression signatures in the mouse lungs following pharyngeal aspiration of well-dispersed MWCNT and (2) determine if these genes were associated with human lung cancer risk and progression. Genome-wide mRNA expression profiles were analyzed in mouse lungs (n = 160) exposed to 0, 10, 20, 40, or 80 μg of MWCNT by pharyngeal aspiration at 1, 7, 28, and 56 d postexposure. By using pairwise statistical analysis of microarray (SAM) and linear modeling, 24 genes were selected, which have significant changes in at least two time points, have a more than 1.5-fold change at all doses, and are significant in the linear model for the dose or the interaction of time and dose. Additionally, a 38-gene set was identified as related to cancer from 330 genes differentially expressed at d 56 postexposure in functional pathway analysis. Using the expression profiles of the cancer-related gene set in 8 mice at d 56 postexposure to 10 μg of MWCNT, a nearest centroid classification accurately predicts human lung cancer survival with a significant hazard ratio in training set (n = 256) and test set (n = 186). Furthermore, both gene signatures were associated with human lung cancer risk (n = 164) with significant odds ratios. These results may lead to development of a surveillance approach for early detection of lung cancer and prognosis associated with MWCNT in the workplace.


Toxicology and Applied Pharmacology | 2011

Multi-Walled Carbon Nanotube-Induced Gene Expression in the Mouse Lung: Association with Lung Pathology

Maricica Pacurari; Yong Qian; Dale W. Porter; Michael W. Wolfarth; Ying-Wooi Wan; Dajie Luo; Min Ding; Vincent Castranova; Nancy Lan Guo

Due to the fibrous shape and durability of multi-walled carbon nanotubes (MWCNT), concerns regarding their potential for producing environmental and human health risks, including carcinogenesis, have been raised. This study sought to investigate how previously identified lung cancer prognostic biomarkers and the related cancer signaling pathways are affected in the mouse lung following pharyngeal aspiration of well-dispersed MWCNT. A total of 63 identified lung cancer prognostic biomarker genes and major signaling biomarker genes were analyzed in mouse lungs (n=80) exposed to 0, 10, 20, 40, or 80μg of MWCNT by pharyngeal aspiration at 7 and 56days post-exposure using quantitative PCR assays. At 7 and 56days post-exposure, a set of 7 genes and a set of 11 genes, respectively, showed differential expression in the lungs of mice exposed to MWCNT vs. the control group. Additionally, these significant genes could separate the control group from the treated group over the time series in a hierarchical gene clustering analysis. Furthermore, 4 genes from these two sets of significant genes, coiled-coil domain containing-99 (Ccdc99), muscle segment homeobox gene-2 (Msx2), nitric oxide synthase-2 (Nos2), and wingless-type inhibitory factor-1 (Wif1), showed significant mRNA expression perturbations at both time points. It was also found that the expression changes of these 4 overlapping genes at 7days post-exposure were attenuated at 56days post-exposure. Ingenuity Pathway Analysis (IPA) found that several carcinogenic-related signaling pathways and carcinogenesis itself were associated with both the 7 and 11 gene signatures. Taken together, this study identifies that MWCNT exposure affects a subset of lung cancer biomarkers in mouse lungs.


Nanotoxicology | 2008

Oxidative and molecular interactions of multi-wall carbon nanotubes (MWCNT) in normal and malignant human mesothelial cells

Maricica Pacurari; Xue J. Yin; Min Ding; Steve Leonard; Diana Schwegler-berry; Barbara S. Ducatman; Madalina M. Chirila; Morinobu Endo; Vincent Castranova; Val Vallyathan

Carbon nanotubes are new tools in industry and medicine with their potential applications in many uses. Multiwall carbon nanotubes (MWCNT) with their morphologic similarity to asbestos and wide commercial and biomedical applications necessitate these investigations. The present study investigated the biological reactivity of MWCNT in normal (NM) and malignant (MM) mesothelial cells. MWCNT containing low iron content generated only negligible amounts of reactive oxygen species with both cells. Exposure of both cell types to MWCNT caused cell death, cytotoxicity, DNA damage and apoptosis, which were greater in MM cells. Exposure of both cells to MWCNT caused a parallel activation of two important transcription factors, phosphorylation of H2AX, and PARP activation which were greater in NM cells. Phosphorylation of ERK1/2 and p38 was greater in MM cells than in NM cells. These findings demonstrate that MWCNT are biologically potent activators of molecular events in NM cells associated with mesothelioma development.


Toxicology and Applied Pharmacology | 2013

System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses

Brandi N. Snyder-Talkington; Julian Dymacek; Dale W. Porter; Michael G. Wolfarth; Robert R. Mercer; Maricica Pacurari; James Denvir; Vincent Castranova; Yong Qian; Nancy Lan Guo

The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 μg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chain simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and was used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts.


American Journal of Respiratory Cell and Molecular Biology | 2010

DNA Double-Strand Breaks by Asbestos, Silica, and Titanium Dioxide

Zola Msiska; Maricica Pacurari; Anurag Mishra; Stephen S. Leonard; Vince Castranova; Val Vallyathan

DNA double-strand breaks (DSBs) can result in cell death or genetic alterations when cells are subjected to radiation, exposure to toxins, or other environmental stresses. A complex DNA-damage-response pathway is activated to repair the damage, and the inability to repair these breaks can lead to carcinogenesis. One of the earliest responses to DNA DSBs is the phosphorylation of a histone, H2AX, at serine 139 (gamma-H2AX), which can be detected by a fluorescent antibody. A study was undertaken to compare the induction of DNA DSBs in normal (small airway epithelial) cells and cancer cells (A549) after exposure to asbestos (crocidolite), a proven carcinogen, silica, a suspected carcinogen, and titanium dioxide (TiO(2)), an inert particle recently reported to be carcinogenic in animals. The results indicate that crocidolite induced greater DNA DSBs than silica and TiO(2), regardless of cell type. DNA DSBs caused by crocidolite were higher in normal cells than in cancer cells. Silica and TiO(2) induced higher DNA DSBs in cancer cells than in normal cells. The production of reactive oxygen species was found to be highest in cells exposed to crocidolite, followed, in potency, by silica and TiO(2). The generation of reactive oxygen species was higher in normal cells than in cancer cells. Cell viability assay indicated that crocidolite caused the greatest cytotoxicity in both cell types. Apoptosis, measured by caspase 3/7 and poly (ADP-Ribose) polymerase activation, was highest in crocidolite-exposed cells, followed by TiO(2) and silica. The results of this study indicate that crocidolite has a greater carcinogenic potential than silica and TiO(2), judged by its ability to cause sustained genomic instability in normal lung cells.

Collaboration


Dive into the Maricica Pacurari's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nancy Lan Guo

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Val Vallyathan

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Yong Qian

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Diane Schwegler-Berry

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Dale W. Porter

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Min Ding

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Ying-Wooi Wan

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandi N. Snyder-Talkington

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge