Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie A. Labouesse is active.

Publication


Featured researches published by Marie A. Labouesse.


Epigenetics | 2015

Maternal immune activation induces GAD1 and GAD2 promoter remodeling in the offspring prefrontal cortex

Marie A. Labouesse; Erbo Dong; Dennis R. Grayson; Alessandro Guidotti; Urs Meyer

Maternal infection during pregnancy increases the risk of neurodevelopmental disorders in the offspring. In addition to its influence on other neuronal systems, this early-life environmental adversity has been shown to negatively affect cortical γ-aminobutyric acid (GABA) functions in adult life, including impaired prefrontal expression of enzymes required for GABA synthesis. The underlying molecular processes, however, remain largely unknown. In the present study, we explored whether epigenetic modifications represent a mechanism whereby maternal infection during pregnancy can induce such GABAergic impairments in the offspring. We used an established mouse model of prenatal immune challenge that is based on maternal treatment with the viral mimetic poly(I:C). We found that prenatal immune activation increased prefrontal levels of 5-methylated cytosines (5mC) and 5-hydroxymethylated cytosines (5hmC) in the promoter region of GAD1, which encodes the 67-kDa isoform of the GABA-synthesising enzyme glutamic acid decarboxylase (GAD67). The early-life challenge also increased 5mC levels at the promoter region of GAD2, which encodes the 65-kDa GAD isoform (GAD65). These effects were accompanied by elevated GAD1 and GAD2 promoter binding of methyl CpG-binding protein 2 (MeCP2) and by reduced GAD67 and GAD65 mRNA expression. Moreover, the epigenetic modifications at the GAD1 promoter correlated with prenatal infection-induced impairments in working memory and social interaction. Our study thus highlights that hypermethylation of GAD1 and GAD2 promoters may be an important molecular mechanism linking prenatal infection to presynaptic GABAergic impairments and associated behavioral and cognitive abnormalities in the offspring.


Psychoneuroendocrinology | 2013

Chronic high fat diet consumption impairs sensorimotor gating in mice

Marie A. Labouesse; Ulrike Stadlbauer; Wolfgang Langhans; Urs Meyer

Chronic intake of high fat diets (HFD) has been long recognized to induce neuronal adaptations and impair elementary cognitive functions. Yet, the consequences of chronic HFD consumption on central information processing remain elusive. The present study thus explored the impact of chronic HFD consumption on pre-attentive central information processing using the paradigm of prepulse inhibition (PPI) of the acoustic startle reflex in mice. Animals were fed an experimental diet with 60% of its calories derived from fat, and were compared to control low fat diet (LFD, 10% calories from fat) fed animals. A first experimental series demonstrated that adult mice exposed to chronic HFD throughout adolescent development displayed significant deficits in PPI compared to LFD-fed mice. Identical chronic HFD treatment further led to presynaptic dopaminergic abnormalities in the form of increased tyrosine hydroxylase density in the nucleus accumbens core and shell subregions. Moreover, we found that tyrosine hydroxylase density in the nucleus accumbens shell negatively correlated with the mean PPI scores, suggesting a potential contribution of the accumbal dopamine system to HFD-induced PPI deficits. This impression was further supported by an additional series of experiments showing that the HFD-induced attenuation of PPI can be mitigated by systemic administration of the dopamine receptor antagonist haloperidol. Finally, HFD feeding was sufficient to disrupt PPI when its exposure was restricted to the peripubertal period, whilst the same manipulation failed to affect PPI when limited to adulthood. In conclusion, our findings emphasize that pre-attentive information processing as assessed by the PPI paradigm is highly sensitive to nutritional factors in the form of chronic HFD consumption, especially when initiated during peripubertal maturation. It is likely that the disrupting effects of HFD on sensorimotor gating involve, at least in part, dopaminergic mechanisms.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015

Long-term pathological consequences of prenatal infection: beyond brain disorders.

Marie A. Labouesse; Wolfgang Langhans; Urs Meyer

Prenatal immunological adversities such as maternal infection have been widely acknowledged to contribute to an increased risk of neurodevelopmental brain disorders. In recent years, epidemiological and experimental evidence has accumulated to suggest that prenatal exposure to immune challenges can also negatively affect various physiological and metabolic functions beyond those typically associated with primary defects in CNS development. These peripheral changes include excessive accumulation of adipose tissue and increased body weight, impaired glycemic regulation and insulin resistance, altered myeloid lineage development, increased gut permeability, hyperpurinergia, and changes in microbiota composition. Experimental work in animal models further suggests that at least some of these peripheral abnormalities could directly contribute to CNS dysfunctions, so that normalization of peripheral pathologies could lead to an amelioration of behavioral deficits. Hence, seemingly unrelated central and peripheral effects of prenatal infection could represent interrelated pathological entities that emerge in response to a common developmental stressor. Targeting peripheral abnormalities may thus represent a valuable strategy to improve the wide spectrum of behavioral abnormalities that can emerge in subjects with prenatal infection histories.


The International Journal of Neuropsychopharmacology | 2015

Behavioral Effects of the Benzodiazepine-Positive Allosteric Modulator SH-053-2’F-S-CH3 in an Immune-Mediated Neurodevelopmental Disruption Model

Juliet Richetto; Marie A. Labouesse; Michael M. Poe; James M. Cook; Anthony A. Grace; Marco Riva; Urs Meyer

Background: Impaired γ-aminobutyric acid (GABA) signaling may contribute to the emergence of cognitive deficits and subcortical dopaminergic hyperactivity in patients with schizophrenia and related psychotic disorders. Against this background, it has been proposed that pharmacological interventions targeting GABAergic dysfunctions may prove useful in correcting such cognitive impairments and dopaminergic imbalances. Methods: Here, we explored possible beneficial effects of the benzodiazepine-positive allosteric modulator SH-053-2’F-S-CH3, with partial selectivity at the α2, α3, and α5 subunits of the GABAA receptor in an immune-mediated neurodevelopmental disruption model. The model is based on prenatal administration of the viral mimetic polyriboinosinic-polyribocytidilic acid [poly(I:C)] in mice, which is known to capture various GABAergic, dopamine-related, and cognitive abnormalities implicated in schizophrenia and related disorders. Results: Real-time polymerase chain reaction analyses confirmed the expected alterations in GABAA receptor α subunit gene expression in the medial prefrontal cortices and ventral hippocampi of adult poly(I:C) offspring relative to control offspring. Systemic administration of SH-053-2’F-S-CH3 failed to normalize the poly(I:C)-induced deficits in working memory and social interaction, but instead impaired performance in these cognitive and behavioral domains both in control and poly(I:C) offspring. In contrast, SH-053-2’F-S-CH3 was highly effective in mitigating the poly(I:C)-induced amphetamine hypersensitivity phenotype without causing side effects in control offspring. Conclusions: Our preclinical data suggest that benzodiazepine-like positive allosteric modulators with activity at the α2, α3, and α5 subunits of the GABAA receptor may be particularly useful in correcting pathological overactivity of the dopaminergic system, but they may be ineffective in targeting multiple pathological domains that involve the co-existence of psychotic, social, and cognitive dysfunctions.


Molecular Psychiatry | 2017

Hypervulnerability of the adolescent prefrontal cortex to nutritional stress via reelin deficiency

Marie A. Labouesse; Olivier Lassalle; Juliet Richetto; Jillian Iafrati; Ulrike Weber-Stadlbauer; Tina Notter; Tilo Gschwind; Lluís Pujadas; Eduardo Soriano; Amy Reichelt; Céline Labouesse; Wolfgang Langhans; Pascale Chavis; Urs Meyer

Overconsumption of high-fat diets (HFDs) can critically affect synaptic and cognitive functions within telencephalic structures such as the medial prefrontal cortex (mPFC). The underlying mechanisms, however, remain largely unknown. Here we show that adolescence is a sensitive period for the emergence of prefrontal cognitive deficits in response to HFD. We establish that the synaptic modulator reelin (RELN) is a critical mediator of this vulnerability because (1) periadolescent HFD (pHFD) selectively downregulates prefrontal RELN+ cells and (2) augmenting mPFC RELN levels using transgenesis or prefrontal pharmacology prevents the pHFD-induced prefrontal cognitive deficits. We further identify N-methyl-d-aspartate-dependent long-term depression (NMDA-LTD) at prefrontal excitatory synapses as a synaptic signature of this association because pHFD abolishes NMDA-LTD, a function that is restored by RELN overexpression. We believe this study provides the first mechanistic insight into the vulnerability of the adolescent mPFC towards nutritional stress, such as HFDs. Our findings have primary relevance to obese individuals who are at an increased risk of developing neurological cognitive comorbidities, and may extend to multiple neuropsychiatric and neurological disorders in which RELN deficiency is a common feature.


Psychopharmacology | 2015

Effects of selective estrogen receptor alpha and beta modulators on prepulse inhibition in male mice

Marie A. Labouesse; Wolfgang Langhans; Urs Meyer

RationaleMultiple lines of evidence suggest that the sex steroid hormone 17-β estradiol (E2) plays a protective role in schizophrenia. Systemic E2 enhances prepulse inhibition (PPI) of the acoustic startle reflex, an operational measure of sensorimotor gating known to be impaired in schizophrenia and related disorders. However, the relative contribution of different estrogen-receptor (ER) isoforms in these associations still awaits examination.ObjectivesThe present study explored the effects of ER-α and ER-β stimulation or blockade on PPI and their functional relevance in an amphetamine-induced PPI deficiency model in male mice.MethodsPrior to the assessment of PPI, C57BL/6N male mice were injected with the ER-α agonist 4,4′,4″-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), the ER-α antagonist 1,3-bis (4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1N-pyrozole dihydrochloride (MPP), the ER-β agonist 2,3-bis (4-hydroxyphenyl)-propionitrile (DPN), or the ER-β antagonist 4-[2-phenyl-5,7-bis (trifluoromethyl) pyrazolo [1,5-a] pyrimidin-3-yl] phenol (PHTPP), with or without concomitant amphetamine treatment.ResultsAcute pharmacological stimulation and blockade of ER-α, respectively, led to a dose-dependent increase and decrease in basal PPI. In contrast, acute treatment with preferential ER-β modulators spared PPI under basal conditions. Pretreatment with either ER-α or ER-β agonist was, however, effective in blocking amphetamine-induced PPI disruption.ConclusionsOur study demonstrates that activation of either ER isoform is capable of modulating dopamine-dependent PPI levels. At the same time, our results suggest that endogenous ER-α signaling may be more relevant than ER-β in the regulation of sensorimotor gating under basal conditions.


Cerebral Cortex | 2016

Genome-Wide Transcriptional Profiling and Structural Magnetic Resonance Imaging in the Maternal Immune Activation Model of Neurodevelopmental Disorders

Juliet Richetto; Robert A. Chesters; Annamaria Cattaneo; Marie A. Labouesse; Ana Maria Carrillo Gutierrez; Tobias C. Wood; Alessia Luoni; Urs Meyer; Anthony C. Vernon; Marco Riva

Prenatal exposure to maternal infection increases the risk of neurodevelopmental disorders, including schizophrenia and autism. The molecular processes underlying this pathological association, however, are only partially understood. Here, we combined unbiased genome-wide transcriptional profiling with follow-up epigenetic analyses and structural magnetic resonance imaging to explore convergent molecular and neuromorphological alterations in corticostriatal areas of adult offspring exposed to prenatal immune activation. Genome-wide transcriptional profiling revealed that prenatal immune activation caused a differential expression of 116 and 251 genes in the medial prefrontal cortex and nucleus accumbens, respectively. A large part of genes that were commonly affected in both brain areas were related to myelin functionality and stability. Subsequent epigenetic analyses indicated that altered DNA methylation of promoter regions might contribute to the differential expression of myelin-related genes. Quantitative relaxometry comparing T1, T2, and myelin water fraction revealed sparse increases in T1 relaxation times and consistent reductions in T2 relaxation times. Together, our multi-system approach demonstrates that prenatal viral-like immune activation causes myelin-related transcriptional and epigenetic changes in corticostriatal areas. Even though these abnormalities do not seem to be associated with overt white matter reduction, they may provide a molecular mechanism whereby prenatal infection can impair myelin functionality and stability.


Frontiers in Behavioral Neuroscience | 2015

Targeting Glia with N-Acetylcysteine Modulates Brain Glutamate and Behaviors Relevant to Neurodevelopmental Disorders in C57BL/6J Mice.

Alice M.S. Durieux; Cathy Fernandes; Declan Murphy; Marie A. Labouesse; Sandra Giovanoli; Urs Meyer; Qi Li; Po-Wah So; Grainne M. McAlonan

An imbalance between excitatory (E) glutamate and inhibitory (I) GABA transmission may underlie neurodevelopmental conditions such as autism spectrum disorder (ASD) and schizophrenia. This may be direct, through alterations in synaptic genes, but there is increasing evidence for the importance of indirect modulation of E/I balance through glial mechanisms. Here, we used C57BL/6J mice to test the hypothesis that striatal glutamate levels can be shifted by N-acetylcysteine (NAC), which acts at the cystine-glutamate antiporter of glial cells. Striatal glutamate was quantified in vivo using proton magnetic resonance spectroscopy. The effect of NAC on behaviors relevant to ASD was examined in a separate cohort. NAC induced a time-dependent decrease in striatal glutamate, which recapitulated findings of lower striatal glutamate reported in ASD. NAC-treated animals were significantly less active and more anxious in the open field test; and NAC-treated females had significantly impaired prepulse inhibition of startle response. This at least partly mimics greater anxiety and impaired sensorimotor gating reported in neurodevelopmental disorders. Thus glial mechanisms regulate glutamate acutely and have functional consequences even in adulthood. Glial cells may be a potential drug target for the development of new therapies for neurodevelopmental disorders across the life-span.


Translational Psychiatry | 2015

Abnormal context–reward associations in an immune-mediated neurodevelopmental mouse model with relevance to schizophrenia

Marie A. Labouesse; Wolfgang Langhans; Urs Meyer

Impairments in central reward processing constitute an important aspect of the negative symptoms of schizophrenia. Despite its clinical relevance, the etiology of deficient reward processing in schizophrenia remains largely unknown. Here, we used an epidemiologically informed mouse model of schizophrenia to explore the effects of prenatal immune activation on reward-related functions. The model is based on maternal administration of the viral mimic PolyI:C and has been developed in relation to the epidemiological evidence demonstrating enhanced risk of schizophrenia and related disorders following prenatal maternal infection. We show that prenatal immune activation induces selective deficits in the expression (but not acquisition) of conditioned place preference for a natural reward (sucrose) without changing hedonic or neophobic responses to the reward. On the other hand, prenatal immune activation led to enhanced place preference for the psychostimulant drug cocaine, while it attenuated the locomotor reaction to the drug. The prenatal exposure did not alter negative reinforcement learning as assessed using a contextual fear conditioning paradigm. Our findings suggest that the nature of reward-related abnormalities following prenatal immune challenge depends on the specificity of the reward (natural reward vs drug of abuse) as well as on the valence domain (positive vs negative reinforcement learning). Moreover, our data indicate that reward abnormalities emerging in prenatally immune-challenged offspring may, at least in part, stem from an inability to retrieve previously established context–reward associations and to integrate such information for appropriate goal-directed behavior.


Molecular Psychiatry | 2017

Transgenerational transmission and modification of pathological traits induced by prenatal immune activation

Ulrike Weber-Stadlbauer; Juliet Richetto; Marie A. Labouesse; Johannes Bohacek; Isabelle M. Mansuy; Urs Meyer

Collaboration


Dive into the Marie A. Labouesse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sandra Giovanoli

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Cook

University of Wisconsin–Milwaukee

View shared research outputs
Researchain Logo
Decentralizing Knowledge