Marie-Agnès Sari
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Agnès Sari.
PLOS ONE | 2009
Adnane Boualem; Christelle Troadec; Irina Kovalski; Marie-Agnès Sari; Rafael Perl-Treves; Abdelhafid Bendahmane
Andromonoecy is a widespread sexual system in angiosperms, characterized by plants carrying both male and bisexual flowers. Monoecy is characterized by the presence of both male and female flowers on the same plant. In cucumber, these sexual forms are controlled by the identity of the alleles at the M locus. In melon, we recently showed that the transition from monoecy to andromonoecy result from a mutation in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, CmACS-7. To isolate the andromonoecy gene in cucumber we used a candidate gene approach in combination with genetical and biochemical analysis. We demonstrated co-segregation of CsACS2, a close homolog of CmACS-7, with the M locus. Sequence analysis of CsACS2 in cucumber accessions identified four CsACS2 isoforms, three in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed the four isoforms in Escherichia coli and assayed their activity in vitro. Like in melon, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active CsACS2 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. Consistent with this, CsACS2, like CmACS-7 in melon, is expressed specifically in carpel primordia of buds determined to develop carpels. Following ACS expression, inter-organ communication is likely responsible for the inhibition of stamina development. In both melon and cucumber, flower unisexuality seems to be the ancestral situation, as the majority of Cucumis species are monoecious. Thus, the ancestor gene of CmACS-7/CsACS2 likely have controlled the stamen development before speciation of Cucumis sativus (cucumber) and Cucumis melo (melon) that have diverged over 40 My ago. The isolation of the genes for andromonoecy in Cucumis species provides a molecular basis for understanding how sexual systems arise and are maintained within and between species.
Science | 2015
Adnane Boualem; Christelle Troadec; Céline Camps; Afef Lemhemdi; Halima Morin; Marie-Agnès Sari; Rina Fraenkel-Zagouri; Irina Kovalski; Catherine Dogimont; Rafael Perl-Treves; Abdelhafid Bendahmane
How flowers separate males and females Most flowering plant families have bisexual flowers with both male and female function. However, most members of the Cucurbiticeae family, which includes melons, cucumbers, and gourds, have unisexual flowers. To understand this difference in sex expression, Boualem et al. identified a cucumber gene expressed in the female flowers. Mutations in this gene were associated with solely male flowers. By integrating this finding into a sex determination model, the authors explain how unisexual flowers can coexist in the same plant. Science, this issue p. 688 A gene in melon and cucumber explains how separate-sex flowers can develop and coexist on the same plant. Understanding the evolution of sex determination in plants requires identifying the mechanisms underlying the transition from monoecious plants, where male and female flowers coexist, to unisexual individuals found in dioecious species. We show that in melon and cucumber, the androecy gene controls female flower development and encodes a limiting enzyme of ethylene biosynthesis, ACS11. ACS11 is expressed in phloem cells connected to flowers programmed to become female, and ACS11 loss-of-function mutants lead to male plants (androecy). CmACS11 represses the expression of the male promoting gene CmWIP1 to control the development and the coexistence of male and female flowers in monoecious species. Because monoecy can lead to dioecy, we show how a combination of alleles of CmACS11 and CmWIP1 can create artificial dioecy.
Biochemical and Biophysical Research Communications | 1986
Marie-Agnès Sari; Jean-Paul Battioni; Daniel Mansuy; J.B. Le Pecq
Meso-substituted porphyrins, ((4-N-methyl-pyridyl)n(Ph)4-n)PH2, n = 1 to 4, bearing between 1 and 4 positive charges have been synthetized and studied for their interaction with Calf Thymus DNA. Competition binding experiments using ethidium bromide or one of its dimers show that these porphyrins and some of their Cu(II) or Fe(III)Cl complexes have apparent binding constants between 3 10(5) and 5 10(7) M-1. Fluorescence energy transfer experiments show that not only the tetracationic previously described porphyrin but also the tri- and dicationic porphyrins are able to intercalate into DNA. These data indicate a greater importance of the polyaromatic porphyrin ring than of the number or position of the positive charges for meso-tetra-arylporphyrin interaction with DNA.
Biochemical Pharmacology | 1997
Axelle Renodon; Jean-Luc Boucher; Marie-Agnès Sari; Marcel Delaforge; Jamal Ouazzani; Daniel Mansuy
The anti-estrogen drug tamoxifen (TMX) was found to act as a strong inhibitor of purified neuronal nitric oxide synthase (nNOS) (IC50 = 2 +/- 0.5 microM), whereas it was inactive toward inducible macrophage NOS (IC50 > 100 microM). TMX affected the activation of NOS by calmodulin, as it not only inhibited L-arginine oxidation to nitric oxide and L-citrulline but also NADPH oxidation and calmodulin-dependent cytochrome c reduction catalyzed by nNOS. These results suggest that TMX could exert some of its biological effects by interfering with constitutive NOS-dependent formation of nitric oxide and/or superoxide ion in various tissues.
Protein Expression and Purification | 2003
Julie M. Stevens; Narsing Rao Saroja; Maryse Jaouen; Maya Belghazi; Jean-Marie Schmitter; Daniel Mansuy; Isabelle Artaud; Marie-Agnès Sari
Nitrile hydratases (NHases) are industrially important iron- and cobalt-containing enzymes that are used in the large-scale synthesis of acrylamide. Heterologous expression of NHases has been complicated by the fact that other proteins (activators or metallochaperones) appear to be required to produce NHases in their catalytically active form. We report a novel heterologous system for the expression of catalytically active iron-containing NI1 NHase in Escherichia coli, involving coexpression with the E. coli GroES and GroEL chaperones. The purified recombinant enzyme was found to be highly similar to the enzyme purified from Comamonas testosteroni according to its spectroscopic features, catalytic properties with various substrates, and post-translational modifications. In addition, we report a rapid and convenient spectrophotometric method to monitor the activity of NI1 NHase during purification.
Biotechnology and Bioengineering | 2002
Wilfrid Boireau; Sophie Bombard; Marie-Agnès Sari; Denis Pompon
This chapter describes the design, practical construction, and characterization of P-DNA and their applications in building a new generation of DNA chips. P-DNAs are artificial covalent assemblies involving a histidine tag head able to bind to modified phospholipids, a core protein domain derived from cytochrome b5 by genetic engineering that features specific spectroscopic and electrochemical properties useful for detection, a synthetic linker acting as a spacer, and an oligonucleotide acting as a probe. P-DNA has the property of being able to efficiently self-associate to a supported bilayer including nickel-iminodiacetate-modified phospholipids. The construction of P-DNA and its interaction with a complementary oligonucleotide sequence can be monitored in real time by surface plasmon resonance using a Biacore system or equivalent. P-DNA chips feature unique properties including tunable surface density of probes; very low nonspecific interaction with external DNA; lateral mobility, minimizing-steric interaction; optimization of hybridization efficiency; and, potentially, recognition by multiple probes of a single target and perfectly defined and homogeneous structure, permitting high density up to a compact monolayer. Potential applications of this new device are multiple, including high-sensitivity and high-selectivity chips for DNA-DNA, DNA-RNA, or DNA-protein interactions.
Journal of The American Society of Nephrology | 2016
Dounia Houamel; Nicolas Ducrot; Thibaud Lefebvre; Raed Daher; Boualem Moulouel; Marie-Agnès Sari; Philippe Lettéron; Said Lyoumi; Sarah Millot; Jerome Tourret; Odile Bouvet; Sophie Vaulont; Alain Vandewalle; Erick Denamur; Hervé Puy; Carole Beaumont; Laurent Gouya; Zoubida Karim
The iron-regulatory peptide hepcidin exhibits antimicrobial activity. Having previously shown hepcidin expression in the kidney, we addressed its role in urinary tract infection (UTI), which remains largely unknown. Experimental UTI was induced in wild-type (WT) and hepcidin-knockout (Hepc-/-) mice using the uropathogenic Escherichia coli CFT073 strain. Compared with infected WT mice, infected Hepc-/- mice showed a dramatic increase in renal bacterial load. Moreover, bacterial invasion was significantly dampened by the pretreatment of WT mice with hepcidin. Infected Hepc-/- mice exhibited decreased iron accumulation in the renal medulla and significant attenuation of the renal inflammatory response. Notably, we demonstrated in vitro bacteriostatic activity of hepcidin against CFT073. Furthermore, CFT073 repressed renal hepcidin, both in vivo and in cultured renal cells, and reduced phosphorylation of SMAD kinase in vivo, suggesting a bacterial strategy to escape the antimicrobial activities of hepcidin. In conclusion, we provide new mechanisms by which hepcidin contributes to renal host defense and suggest that targeting hepcidin offers a strategy to prevent bacterial invasion.
FEBS Letters | 1997
A. Renodon; Jean-Luc Boucher; Marie-Agnès Sari; Marcel Delaforge; Jamal Ouazzani; Daniel Mansuy
The ergot alkaloid bromocriptine (BKT) was found to act as a strong inhibitor of purified neuronal nitric oxide synthase (NOS) (IC50=10±2 μM) whereas it was poorly active towards inducible macrophage NOS (IC50>100 μM). BKT affects the activation of NOS by calmodulin, as it not only inhibits l‐arginine oxidation to NO and l‐citrulline but also NADPH oxidation and calmodulin‐dependent cytochrome c reduction catalyzed by neuronal NOS. These results suggest that BKT could exert some of its therapeutic effects by interfering with the NOS‐dependent formation of nitric oxide and/or superoxide ion in various tissues.
Free Radical Research | 2007
Maud Bréard; Marie-Agnès Sari; Yves Frapart; Jean-Luc Boucher; Claire Ducrocq; Catherine Grillon
Serotonin, an important neurotransmitter, is colocalized with neuronal nitric oxide synthase (nNOS), a homodimeric enzyme which catalyzes the production of nitric oxide (NO√) and/or oxygen species. As many interactions have been reported between the nitrergic and serotoninergic systems, we studied the effect of serotonin on nNOS activities. Our results reveal that nNOS is activated by serotonin as both NADPH consumption and oxyhemoglobin (OxyHb) oxidation were enhanced. The generation of l-citrulline from l-arginine (l-Arg) was not affected by serotonin in the range of 0–200 μM, suggesting an additional production of oxygen-derived species. But 5-hydroxytryptamine (5HT) induced the formation of both and H2O2 by nNOS, as evidenced by electron paramagnetic resonance (EPR) and by using specific spin traps. Overall, these results demonstrate that serotonin is able to activate nNOS, leading to the generation of reactive oxygen species (ROS) in addition to the NO√ production. Such a property must be considered in vivo as various nNOS-derived products mediate different signaling pathways.
PLOS ONE | 2016
Adnane Boualem; Afef Lemhemdi; Marie-Agnès Sari; Sarah Pignoly; Christelle Troadec; Fadi Abou Choucha; Ilknur Solmaz; Nebahat Sari; Catherine Dogimont; Abdelhafid Bendahmane
Understanding the evolution of sex determination in plants requires the cloning and the characterization of sex determination genes. Monoecy is characterized by the presence of both male and female flowers on the same plant. Andromonoecy is characterized by plants carrying both male and bisexual flowers. In watermelon, the transition between these two sexual forms is controlled by the identity of the alleles at the A locus. We previously showed, in two Cucumis species, melon and cucumber, that the transition from monoecy to andromonoecy results from mutations in 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene, ACS-7/ACS2. To test whether the ACS-7/ACS2 function is conserved in cucurbits, we cloned and characterized ClACS7 in watermelon. We demonstrated co-segregation of ClACS7, the homolog of CmACS-7/CsACS2, with the A locus. Sequence analysis of ClACS7 in watermelon accessions identified three ClACS7 isoforms, two in andromonoecious and one in monoecious lines. To determine whether the andromonoecious phenotype is due to a loss of ACS enzymatic activity, we expressed and assayed the activity of the three protein isoforms. Like in melon and cucumber, the isoforms from the andromonoecious lines showed reduced to no enzymatic activity and the isoform from the monoecious line was active. Consistent with this, the mutations leading andromonoecy were clustered in the active site of the enzyme. Based on this, we concluded that active ClACS7 enzyme leads to the development of female flowers in monoecious lines, whereas a reduction of enzymatic activity yields hermaphrodite flowers. ClACS7, like CmACS-7/CsACS2 in melon and cucumber, is highly expressed in carpel primordia of buds determined to develop carpels and not in male flowers. Based on this finding and previous investigations, we concluded that the monoecy gene, ACS7, likely predated the separation of the Cucumis and Citrullus genera.