Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Aline Martin-Drumel is active.

Publication


Featured researches published by Marie-Aline Martin-Drumel.


Journal of Chemical Physics | 2010

Submillimeter-wave and far-infrared spectroscopy of high-J transitions of the ground and ν2=1 states of ammonia

Shanshan Yu; John C. Pearson; Brian J. Drouin; Keeyoon Sung; O. Pirali; Michel Vervloet; Marie-Aline Martin-Drumel; Christian P. Endres; Tetsuro Shiraishi; Kaori Kobayashi; Fusakazu Matsushima

Complete and reliable knowledge of the ammonia spectrum is needed to enable the analysis and interpretation of astrophysical and planetary observations. Ammonia has been observed in the interstellar medium up to J=18 and more highly excited transitions are expected to appear in hot exoplanets and brown dwarfs. As a result, there is considerable interest in observing and assigning the high J (rovibrational) spectrum. In this work, numerous spectroscopic techniques were employed to study its high J transitions in the ground and ν(2)=1 states. Measurements were carried out using a frequency multiplied submillimeter spectrometer at Jet Propulsion Laboratory (JPL), a tunable far-infrared spectrometer at University of Toyama, and a high-resolution Bruker IFS 125 Fourier transform spectrometer (FTS) at Synchrotron SOLEIL. Highly excited ammonia was created with a radiofrequency discharge and a dc discharge, which allowed assignments of transitions with J up to 35. One hundred and seventy seven ground state and ν(2)=1 inversion transitions were observed with microwave accuracy in the 0.3-4.7 THz region. Of these, 125 were observed for the first time, including 26 ΔK=3 transitions. Over 2000 far-infrared transitions were assigned to the ground state and ν(2)=1 inversion bands as well as the ν(2) fundamental band. Of these, 1912 were assigned using the FTS data for the first time, including 222 ΔK=3 transitions. The accuracy of these measurements has been estimated to be 0.0003-0.0006 cm(-1). A reduced root mean square error of 0.9 was obtained for a global fit of the ground and ν(2)=1 states, which includes the lines assigned in this work and all previously available microwave, terahertz, far-infrared, and mid-infrared data. The new measurements and predictions reported here will support the analyses of astronomical observations by high-resolution spectroscopy telescopes such as Herschel, SOFIA, and ALMA. The comprehensive experimental rovibrational energy levels reported here will permit further refinement of the potential energy surface to improve ammonia ab initio calculations and facilitate assignment of new high-resolution spectra of hot ammonia.


Science Advances | 2015

Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.

Caroline C. Womack; Marie-Aline Martin-Drumel; Gordon G. Brown; Robert W. Field; M. C. McCarthy

Trace amounts of the simplest Criegee intermediate in the gas-phase ozonolysis of ethylene are detected by high-resolution spectroscopy. Ozonolysis is one of the dominant oxidation pathways for tropospheric alkenes. Although numerous studies have confirmed a 1,3-cycloaddition mechanism that generates a Criegee intermediate (CI) with form R1R2COO, no small CIs have ever been directly observed in the ozonolysis of alkenes because of their high reactivity. We present the first experimental detection of CH2OO in the gas-phase ozonolysis of ethylene, using Fourier transform microwave spectroscopy and a modified pulsed nozzle, which combines high reactant concentrations with rapid sampling and sensitive detection. Nine other product species of the O3 + C2H4 reaction were also detected, including formaldehyde, formic acid, dioxirane, and ethylene ozonide. The presence of all these species can be attributed to the unimolecular and bimolecular reactions of CH2OO, and their abundances are in qualitative agreement with published mechanisms and rate constants.


Journal of the American Chemical Society | 2016

Spontaneous and Selective Formation of HSNO, a Crucial Intermediate Linking H2S and Nitroso Chemistries

Matthew Nava; Marie-Aline Martin-Drumel; Christopher A. Lopez; Kyle N. Crabtree; Caroline C. Womack; Thanh Luan Nguyen; Sven Thorwirth; Christopher Cummins; John F. Stanton; M. C. McCarthy

Thionitrous acid (HSNO), a potential key intermediate in biological signaling pathways, has been proposed to link NO and H2S biochemistries, but its existence and stability in vivo remain controversial. We establish that HSNO is spontaneously formed in high concentration when NO and H2S gases are mixed at room temperature in the presence of metallic surfaces. Our measurements reveal that HSNO is formed by the reaction H2S + N2O3 → HSNO + HNO2, where N2O3 is a product of NO disproportionation. These studies also suggest that further reaction of HSNO with H2S may form HNO and HSSH. The length of the S-N bond has been derived to high precision and is found to be unusually long: 1.84 Å, the longest S-N bond reported to date for an R-SNO compound. The present structural and, particularly, reactivity investigations of this elusive molecule provide a firm foundation to better understand its potential physiological chemistry and propensity to undergo S-N bond cleavage in vivo.


Journal of the American Chemical Society | 2016

A Molecular Precursor to Phosphaethyne and Its Application in Synthesis of the Aromatic 1,2,3,4-Phosphatriazolate Anion

Wesley J. Transue; Alexandra Velian; Matthew Nava; Marie-Aline Martin-Drumel; Caroline C. Womack; Jun Jiang; Gao-Lei Hou; Xue-Bin Wang; M. C. McCarthy; Robert W. Field; Christopher C. Cummins

Dibenzo-7-phosphanorbornadiene Ph3PC(H)PA (1, A = C14H10, anthracene) is reported here as a molecular precursor to phosphaethyne (HC≡P), produced together with anthracene and triphenylphosphine. HCP generated by thermolysis of 1 has been observed by molecular beam mass spectrometry, laser-induced fluorescence, microwave spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. In toluene, fragmentation of 1 has been found to proceed with activation parameters of ΔH(⧧) = 25.5 kcal/mol and ΔS(⧧) = -2.43 eu and is accompanied by formation of an orange insoluble precipitate. Results from computational studies of the mechanism of HCP generation are in good agreement with experimental data. This high-temperature method of HCP generation has pointed to new reaction chemistry with azide anion to produce the 1,2,3,4-phosphatriazolate anion, HCPN3(-), for which structural data have been obtained in a single-crystal X-ray diffraction study. Negative-ion photoelectron spectroscopy has shown the adiabatic detachment energy for this anion to be 3.555(10) eV. The aromaticity of HCPN3(-) has been assessed using nucleus-independent chemical shift, quantum theory of atoms in molecules, and natural bond orbital methods.


Journal of Chemical Physics | 2016

Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures

M. C. McCarthy; Oscar Martinez; Brett A. McGuire; Kyle N. Crabtree; Marie-Aline Martin-Drumel; John F. Stanton

HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO2 reaction represents the final step for the production of CO2 in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be produced almost equally well from either OH + CO or H + CO2 in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO2. Using isotopically labelled precursors, the OH + C(18)O reaction predominately yields HOC(18)O for both isomers, but H(18)OCO is observed as well, typically at the level of 10%-20% that of HOC(18)O; the opposite propensity is found for the (18)OH + CO reaction. DO + C(18)O yields similar ratios between DOC(18)O and D(18)OCO as those found for OH + C(18)O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO2, which, at the high pressure of our gas expansion, can readily occur. The large (13)C Fermi-contact term (aF) for trans- and cis-HO(13)CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.


Journal of Chemical Physics | 2014

Microwave spectral taxonomy: A semi-automated combination of chirped-pulse and cavity Fourier-transform microwave spectroscopy

Kyle N. Crabtree; Marie-Aline Martin-Drumel; Gordon G. Brown; Sydney Gaster; Taylor Hall; M. C. McCarthy

Because of its structural specificity, rotational spectroscopy has great potential as an analytical tool for characterizing the chemical composition of complex gas mixtures. However, disentangling the individual molecular constituents of a rotational spectrum, especially if many of the lines are entirely new or unknown, remains challenging. In this paper, we describe an empirical approach that combines the complementary strengths of two techniques, broadband chirped-pulse Fourier transform microwave spectroscopy and narrowband cavity Fourier transform microwave spectroscopy, to characterize and assign lines. This procedure, called microwave spectral taxonomy, involves acquiring a broadband rotational spectrum of a rich mixture, categorizing individual lines based on their relative intensities under series of assays, and finally, linking rotational transitions of individual chemical compounds within each category using double resonance techniques. The power of this procedure is demonstrated for two test cases: a stable molecule with a rich spectrum, 3,4-difluorobenzaldehyde, and products formed in an electrical discharge through a dilute mixture of C2H2 and CS2, in which spectral taxonomy has enabled the identification of propynethial, HC(S)CCH.


Journal of Chemical Physics | 2016

High resolution spectroscopy of six SOCl2 isotopologues from the microwave to the far-infrared

Marie-Aline Martin-Drumel; A. Roucou; Gordon G. Brown; Sven Thorwirth; Olivier Pirali; G. Mouret; F. Hindle; M. C. McCarthy; Arnaud Cuisset

Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (r(e)(SE)) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.


The Astrophysical Journal | 2015

A Complete Spectroscopic Characterization of SO and its Isotopologues up to the Terahertz Domain

Marie-Aline Martin-Drumel; F. Hindle; G. Mouret; A. Cuisset; J. Cernicharo

In order to obtain accurate terahertz center frequencies for SO and its isotopologues, we have studied the absorption spectrum of SO, 34SO, and 33SO up to 2.5 THz using continuous-wave terahertz photomixing based on a frequency comb providing an accuracy down to 10 kHz. Sulfur monoxide was produced in a radio frequency discharge of air in a cell containing pure sulfur. Together with the strong absorption signal of the main isotopologue, transitions of 34SO (34S: 4.21%) and 33SO (33S: 0.75%) were observed in natural abundance. The newly observed transitions constitute an extension of the observed rotational quantum numbers of the molecule toward higher N values, allowing an improvement of the molecular parameters for the three species. An isotopically invariant fit has been performed based on pure rotational and ro-vibrational transitions of all SO isotopologues, enabling their accurate line position prediction at higher frequencies. Thanks to this new set of parameters, it is now possible to predict with very high accuracy the frequencies of the ro-vibrational lines. This should enable the research of SO in the mid-IR using ground-based IR telescopes, space-based telescope archives (Infrared Space Observatory, Spitzer), and future space missions such as the James Webb Space Telescope. This set of parameters is particularly well adapted for the detection of SO lines in O-rich evolved stars or in molecular clouds in absorption against bright IR sources.


Journal of Chemical Physics | 2015

Rotation-vibration interactions in the spectra of polycyclic aromatic hydrocarbons: Quinoline as a test-case species

O. Pirali; Zbigniew Kisiel; M. Goubet; S. Gruet; Marie-Aline Martin-Drumel; Arnaud Cuisset; F. Hindle; G. Mouret

Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C9H7N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν45 and ν44 vibrational modes (located at about 168 cm(-1) and 178 cm(-1), respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.


Journal of Physical Chemistry A | 2014

Synchrotron based FT-FIR pure rotational spectroscopy of the NH2 radical in its two lowest vibrational states.

Marie-Aline Martin-Drumel; Olivier Pirali; Vervloet M

Six Fourier-transform FIR spectra of the NH2 radical have been recorded at high resolution (0.001 cm(-1)) using synchrotron radiation on the AILES beamline at SOLEIL Synchrotron. Three different experimental discharge setups have been used to observe, in absorption, 1009 pure rotational transitions of NH2 in the vibrational ground state (000) and 170 pure rotational transitions within the first excited vibrational state (010). These results constitute a significant extension of the observed quantum numbers for these two states. The spectra permitted several couplings to be resolved (asymmetric coupling, spin-rotation coupling, hyperfine structure) for relatively highly excited energy levels. An effective fit has been realized using both standard Watson-S and -A reductions despite an abnormal centrifugal distortion effect for this light hydride.

Collaboration


Dive into the Marie-Aline Martin-Drumel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

O. Pirali

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brett A. McGuire

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge