Marie-Ange Krzewinski-Recchi
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Ange Krzewinski-Recchi.
Biochimie | 2001
Anne Harduin-Lepers; Veronica Vallejo-Ruiz; Marie-Ange Krzewinski-Recchi; Bénédicte Samyn-Petit; Sylvain Julien; Philippe Delannoy
The human genome encodes probably more than 20 different sialyltransferases involved in the biosynthesis of sialylated glycoproteins and glycolipids but to date only 15 different human sialyltransferase cDNAs have been cloned and characterized. Each of the sialyltransferase genes is differentially expressed in a tissue-, cell type-, and stage-specific manner to regulate the sialylation pattern of cells. These enzymes differ in their substrate specificity, tissue distribution and various biochemical parameters. However, enzymatic analysis conducted in vitro with recombinant enzyme revealed that one linkage can be synthesized by multiple enzymes. We present here an overview of these human genes and enzymes, the regulation of their occurrence and their involvement in several physiological and pathological processes.
Carbohydrate Research | 2010
Aurélie Cazet; Sylvain Julien; Marie Bobowski; Marie-Ange Krzewinski-Recchi; Anne Harduin-Lepers; Sophie Groux-Degroote; Philippe Delannoy
Changes in cell surface glycosylation are common modifications that occur during oncogenesis, leading to the over-expression of tumour-associated carbohydrate antigens (TACA). Most of these antigens are sialylated and the increase of sialylation is a well-known feature of transformed cells. In breast cancer, expression of TACA such as sialyl-Lewis(x) or sialyl-Tn is usually associated with a poor prognosis and a decreased overall survival of patients. However, the specific role of these sialylated antigens in breast tumour development and aggressiveness is not clearly understood. These glycosylation changes result from the modification of the expression of genes encoding specific glycosyltransferases involved in glycan biosynthesis and the level of expression of sialyltransferase genes has been proposed to be a prognostic marker for the follow-up of breast cancer patients. Several human cellular models have been developed in order to explain the mechanisms by which carbohydrate antigens can reinforce breast cancer progression and aggressiveness. TACA expression is associated with changes in cell adhesion, migration, proliferation and tumour growth. In addition, recent data on glycolipid biosynthesis indicate an important role of G(D3) synthase expression in breast cancer progression. The aim of this review is to summarize our current knowledge of sialylation changes that occur in breast cancer and to describe the cellular models developed to analyze the consequences of these changes on disease progression and aggressiveness.
Breast Cancer Research and Treatment | 2005
Sylvain Julien; Chann Lagadec; Marie-Ange Krzewinski-Recchi; Gilles Courtand; Xuefen Le Bourhis; Philippe Delannoy
SummarySialyl-Tn is a carbohydrate antigen overexpressed in several epithelial cancers including breast cancer, and usually associated with poor prognosis. Sialyl-Tn is synthesized by a CMP-Neu5Ac: GalNAc α2,6-sialyltransferase: ST6GalNAc I, which catalyzes the transfer of a sialic acid residue in α2,6-linkage to the GalNAcα1-O-Ser/Thr structure. The resulting disaccharide (Neu5Acα2-6GalNAcα1-O-Ser/Thr) cannot be further elongated and sialyl-Tn expression results therefore in a shortening of the O-glycan chains. However, usual breast cancer cell lines express neither ST6GalNAc I nor sialyl-Tn antigen. We have previously shown that stable transfection of MDA-MB-231 cells with the hST6GalNAc I cDNA induces the sialyl-Tn antigen expression at the cell surface and leads to a decreased cell growth and an increased cell migration. We describe herein the generation of new T47-D clones expressing sialyl-Tn antigen after hST6GalNAc I cDNA stable transfection. sialyl-Tn antigen is carried by several high molecular weight membrane bound O-glycoproteins, including MUC1. We show that sialyl-Tn expression induces a decrease of cell growth and adhesion, and an increase of cell migration in sialyl-Tn positive clones compared to mock transfected cells. These observations show that the alteration of the O-glycans pattern is sufficient to modify the biological features of cancer cells. These T47-D sialyl-Tn expressing clones might allow further in vivo investigation to determine precisely the impact of such O-glycosylation modifications on breast cancer development.
Biochemical Journal | 2008
Sophie Groux-Degroote; Marie-Ange Krzewinski-Recchi; Aurélie Cazet; Audrey Vincent; Sylvain Lehoux; Jean-Jacques Lafitte; Isabelle Van Seuningen; Philippe Delannoy
Bronchial mucins from patients suffering from CF (cystic fibrosis) exhibit glycosylation alterations, especially increased amounts of the sialyl-Lewis(x) (NeuAcalpha2-3Galbeta1-4[Fucalpha1-3]GlcNAc-R) and 6-sulfo-sialyl-Lewis(x) (NeuAcalpha2-3Galbeta1-4[Fucalpha1-3][SO(3)H-6]GlcNAc-R) terminal structures. These epitopes are preferential receptors for Pseudomonas aeruginosa, the bacteria responsible for the chronicity of airway infection and involved in the morbidity and early death of CF patients. However, these glycosylation changes cannot be directly linked to defects in CFTR (CF transmembrane conductance regulator) gene expression since cells that secrete airway mucins express no or very low amounts of the protein. Several studies have shown that inflammation may affect glycosylation and sulfation of various glycoproteins, including mucins. In the present study, we show that incubation of macroscopically healthy fragments of human bronchial mucosa with IL-6 (interleukin-6) or IL-8 results in a significant increase in the expression of alpha1,3/4-fucosyltransferases [FUT11 (fucosyltransferase 11 gene) and FUT3], alpha2-6- and alpha2,3-sialyltransferases [ST3GAL6 (alpha2,3-sialyltransferase 6 gene) and ST6GAL2 (alpha2,6-sialyltransferase 2 gene)] and GlcNAc-6-O-sulfotransferases [CHST4 (carbohydrate sulfotransferase 4 gene) and CHST6] mRNA. In parallel, the amounts of sialyl-Lewis(x) and 6-sulfo-sialyl-Lewis(x) epitopes at the periphery of high-molecular-mass proteins, including MUC4, were also increased. In conclusion, our results indicate that IL-6 and -8 may contribute to the increased levels of sialyl-Lewis(x) and 6-sulfo-sialyl-Lewis(x) epitopes on human airway mucins from patients with CF.
Glycoconjugate Journal | 2001
Sylvain Julien; Marie-Ange Krzewinski-Recchi; Anne Harduin-Lepers; Valérie Gouyer; Guillemette Huet; Xuefen Le Bourhis; Philippe Delannoy
Sialyl-Tn antigen (STn) is a cancer associated carbohydrate antigen over-expressed in several cancers including breast cancer, and currently associated with more aggressive diseases and poor prognosis. However, the commonly used breast cancer cell lines (MDA-MB-231, T47-D and MCF7) do not express STn antigen. The key step in the biosynthesis of STn is the transfer of a sialic acid residue in α2,6-linkage to GalNAcα-O-Ser/Thr. This reaction is mainly catalyzed by a CMP-Neu5Ac GalNAc α2,6-sialyltransferase: ST6GalNAc I. In order to generate STn-positive breast cancer cells, we have cloned a cDNA encoding the full-lenght human ST6GalNAc I from HT-29-MTX cells. The stable transfection of MDA-MB-231 with an expression vector encoding ST6GalNAc I induces the expression of STn antigen at the cell surface. The expression of STn short cuts the initial O-glycosylation pattern of these cell lines, by competing with the Core-1 β1,3-galactosyltransferase, the first enzyme involved in the elongation of O-glycan chains. Moreover, we show that STn expression is associated with morphological changes, decreased growth and increased migration of MDA-MB-231 cells.
Frontiers in Bioscience | 2012
Anne Harduin-Lepers; Marie-Ange Krzewinski-Recchi; Florent Colomb; François Foulquier; Sophie Groux-Degroote; Philippe Delannoy
Abnormally elevated levels of sialylated tumor associated carbohydrate antigens are frequently described at the surface of cancer cells and/or secreted in biological fluids. It is now well established that this over-expression may result from deregulation in sialyltransferases enzymatic activity involved in their biosynthesis, but the precise molecular mechanisms remain unknown. Twenty different human sialyltransferases preside to the sialylation of glycoconjugates, either glycolipids or glycoproteins. This review summarizes the current knowledge on human sialyltransferases implicated in the altered expression of sialylated tumor associated antigens, the molecular basis of their regulated expression in cancer cells and the various tools developed by researchers and clinicians for their study in pathological samples.
Biochemical Journal | 2003
Maria-Dolores Montiel; Marie-Ange Krzewinski-Recchi; Philippe Delannoy; Anne Harduin-Lepers
The nucleotide sequence of the short and long transcripts of beta1,4- N -acetylgalactosaminyltransferase have been submitted to the DDBJ, EMBL, GenBank(R) and GSDB Nucleotide Sequence Databases under accession nos AJ517770 and AJ517771 respectively. The human Sd(a) antigen is formed through the addition of an N -acetylgalactosamine residue via a beta1,4-linkage to a sub-terminal galactose residue substituted with an alpha2,3-linked sialic acid residue. We have taken advantage of the previously cloned mouse cDNA sequence of the UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta1,4- N -acetylgalactosaminyltransferase (Sd(a) beta1,4GalNAc transferase) to screen the human EST and genomic databases and to identify the corresponding human gene. The sequence spans over 35 kb of genomic DNA on chromosome 17 and comprises at least 12 exons. As judged by reverse transcription PCR, the human gene is expressed widely since it is detected in various amounts in almost all cell types studied. Northern blot analysis indicated that five Sd(a) beta1,4GalNAc transferase transcripts of 8.8, 6.1, 4.7, 3.8 and 1.65 kb were highly expressed in colon and to a lesser extent in kidney, stomach, ileum and rectum. The complete coding nucleotide sequence was amplified from Caco-2 cells. Interestingly, the alternative use of two first exons, named E1(S) and E1(L), leads to the production of two transcripts. These nucleotide sequences give rise potentially to two proteins of 506 and 566 amino acid residues, identical in their sequence with the exception of their cytoplasmic tail. The short form is highly similar (74% identity) to the mouse enzyme whereas the long form shows an unusual long cytoplasmic tail of 66 amino acid residues that is as yet not described for any other mammalian glycosyltransferase. Upon transient transfection in Cos-7 cells of the common catalytic domain, a soluble form of the protein was obtained, which catalysed the transfer of GalNAc residues to alpha2,3-sialylated acceptor substrates, to form the GalNAcbeta1-4[Neu5Acalpha2-3]Galbeta1-R trisaccharide common to both Sd(a) and Cad antigens.
Biochimica et Biophysica Acta | 2000
Bénédicte Samyn-Petit; Marie-Ange Krzewinski-Recchi; Wim F.A. Steelant; Philippe Delannoy; Anne Harduin-Lepers
A cDNA clone encoding a human Galbeta1-3GalNAc alpha2, 6-sialyltransferase (designated hST6GalNAc II) was identified employing the PCR with degenerated primers to the sialylmotifs, followed by BLAST analysis of databanks. This sialyltransferase sequence is similar to that of previously cloned ST6GalNAc II (chicken and mouse) and shows the sialylmotifs that are present in all eukaryotic members of the sialyltransferase gene family. The predicted amino acid sequence encodes a putative type II transmembrane protein as found for other eukaryotic sialyltransferases and shows significant similarity to chicken (56. 8% identity) and mouse (74.6% identity) enzymes. Expression of a secreted form of hST6GalNAc II in COS-7 cells showed that the gene product had Galbeta1-3GalNAc (sialyl to GalNAc) alpha2, 6-sialyltransferase activity. In vitro analysis of substrate specificity revealed that the enzyme required a peptide aglycone fraction to be active and used both Galbeta1-3GalNAc and Neu5Acalpha2-3Galbeta1-3GalNAc as acceptor substrates. Northern analysis revealed a restricted expression pattern of two hST6GalNAc II transcripts, a 2.0 kb mRNA found mainly in skeletal muscle, heart and kidney and a 1.8 kb mRNA found in placenta, lung and leukocytes. No transcriptional expression was detected in brain, thymus or spleen. Transcriptional expression of the ST6GalNAc II gene was followed in various human cell lines and found to be expressed in almost all cell types with notable exceptions for several myeloid and lymphoid cell lines.
Glycoconjugate Journal | 2009
François Trottein; Lana Schaffer; Stoyan Ivanov; Christophe Paget; Catherine Vendeville; Aurélie Cazet; Sophie Groux-Degroote; Suzanna Lee; Marie-Ange Krzewinski-Recchi; Christelle Faveeuw; Steven R. Head; Philippe Gosset; Philippe Delannoy
Using a focused glycan-gene microarray, we compared the glycosyltransferase (GT) and sulfotransferase gene expression profiles of human monocytes, dendritic cells (DCs) and macrophages (Mϕs), isolated or differentiated from the same donors. Microarray analysis indicated that monocytes express transcripts for a full set of enzymes involved in the biosynthesis of multi-multiantennary branched N-glycans, potentially elongated by poly-N-acetyl-lactosamine chains, and of mucin-type Core 1 and Core 2 sialylated O-glycans. Monocytes also express genes involved in the biosynthesis and modification of glycosaminoglycans, but display a limited expression of GTs implicated in glycolipid synthesis. Among genes expressed in monocytes (90 out of 175), one third is significantly modulated in DCs and Mϕ respectively, most of them being increased in both cell types relative to monocytes. These changes might potentially enforce the capacity of differentiated cells to synthesize branched N-glycans and mucin-type O-glycans and to remodel cell surface proteoglycans. Stimulation of DCs and Mϕs with lipopolysaccharide caused a general decrease in gene expression, mainly affecting genes found to be positively modulated during the differentiation steps. Interestingly, although a similar set of enzymes are modulated in the same direction in mature DCs and Mϕs, cell specific genes are also differentially regulated during maturation, a phenomenon that may sustain functional specificities. Validation of this analysis was provided by quantitative real-time PCR and flow cytometry of cell surface glycan antigens. Collectively, this study implies an important modification of the pattern of glycosylation in DCs and Mϕs undergoing differentiation and maturation with potential biological consequences.
International Journal of Biological Markers | 2003
Mohamed Hebbar; Marie-Ange Krzewinski-Recchi; Louis Hornez; Alain Verdière; Anne Harduin-Lepers; Jacques Bonneterre; Philippe Delannoy; Jean-Philippe Peyrat
AIMS AND BACKGROUND A crucial step in the metastatic process is the interaction between the endothelial molecule E-selectin and its tumoral ligands sialyl-Lewis- and sialyl-Lewis. Sialyltranferases are involved in the biosynthesis of these ligands. The aim of this study was to assess the prognostic value of tumoral sialyltransferase expression and of circulating soluble E-selectin (sE-selectin) in node-negative breast cancer patients. METHODS Using a multiplex RT-PCR method, we measured the expression of five sialyltransferases (ST3Gal III, ST6Gal I, ST3Gal IV, ST3Gal I and ST3Gal II) in tumors of 135 surgically treated node-negative breast cancer patients. Circulating sE-selectin concentrations were measured by an ELISA method prior to surgery. We also analyzed tumor size, histoprognostic grading and steroid hormone receptor status. RESULTS The median follow-up was 7.5 years. Expression of estrogen receptors was associated with a good prognosis for relapse-free survival in univariate analysis. A high ST3Gal III/ST6Gal I ratio and a high sE-selectin concentration were associated with a bad prognosis for relapse-free survival and overall survival in univariate and multivariate analysis. CONCLUSION In the present study, tumoral sialyltransferase expression and circulating sE-selectin concentrations had prognostic value in patients with node-negative breast cancer. This result provides further evidence for the important role of these agents in the metastatic process.