Marie-Anne Barny
University of Paris
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Anne Barny.
Molecular Plant-microbe Interactions | 2006
Tristan Boureau; Hayat El-Maarouf-Bouteau; Amélie Garnier; Marie-Noëlle Brisset; Claude Perino; Igor Pucheu; Marie-Anne Barny
Erwinia amylovora is responsible for fire blight, a necrotic disease of apples and pears. E. amylovora relies on a type III secretion system (TTSS) to induce disease on hosts and hypersensitive response (HR) on nonhost plants. The DspA/E protein is essential for E. amylovora pathogenicity and is secreted via the TTSS in vitro. DspA/E belongs to a type III effector family that is conserved in several phytopathogenic bacteria. In E. amylovora, DspA/E has been implicated in the generation of an oxidative stress during disease and the suppression of callose deposition. We investigated the fate of DspA/E in planta. DspA/E delivered artificially to apple or tobacco cells by agroinfection induced necrotic symptoms, indicating that DspA/E was probably injected via the TTSS. We confirmed that DspA/E acts as a major cell-death inducer during disease and HR, because the dspA/E mutant is severely impaired in its ability to induce electrolyte leakage in apple and tobacco leaves. Expression of the defense marker gene PR1 was delayed when dspA/E was transiently expressed in tobacco, suggesting that DspA/E-mediated necrosis may be associated with an alteration of defense responses.
FEBS Letters | 2003
Jean-Stéphane Venisse; Marie-Anne Barny; Jean-Pierre Paulin; Marie-Noëlle Brisset
Erwinia amylovora, the causal agent of fire blight of Maloideae, induces in its susceptible host plants an oxidative burst as does an incompatible pathogen. In this paper we present evidence that the elicitation of this phenomenon is the result of the combined action of two Hrp effectors of the bacteria, HrpN and DspA. We also confirmed that desferrioxamine, the siderophore of E. amylovora, is necessary for the bacteria to tolerate high levels of hydrogen peroxide. Two other pathogenicity factors of the bacteria, the HrpW effector and the capsule, do not seem to play any role in the elicitation of the oxidative burst nor in the protection of the bacteria.
Molecular Plant Pathology | 2002
Sophie Gaudriault; Jean-Pierre Paulin; Marie-Anne Barny
Summary Erwinia amylovora is a Gram-negative bacterium responsible for fire blight, a necrotic disease affecting plants of the Rosaceae family. E. amylovora virulence is dependent on a functional type III secretion system. To date, four proteins have been shown to travel through this secretion system: HrpN, HrpW, HrpA, and DspA/E. Next to dspA/E, dspB/F encodes a small acidic protein sharing features similar to those of type III secretion chaperones described in animal systems. Here, we show that DspA/E was not secreted in a dspB/F background, while other known type III secreted proteins (HrpN, HrpW, and HrpA) remained secreted to wild-type level. A functional copy of dspB/F introduced in trans in a dspB/F background restored DspA/E secretion. Further analysis showed that DspA/E was not detected in a dspB/F background. This effect was post-transcriptional as the expression of a dspA/E::uidA transcriptional fusion was not reduced in a dspB/F background. Affinity blot analysis experiments demonstrated that DspB/F specifically interacts with DspA/E in vitro. Therefore, DspB/F acts as a specific DspA/E chaperone and DspB/F prevents intrabacterial DspA/E degradation. dspB/F mutants were found to retain some pathogenicity to pear seedlings. This phenotype contrasts with the non-pathogenic phenotype of the dspA/E mutant and suggests that the DspA/E protein still transits through the type III secretion machinery in a dspB/F mutant even though it is not detected in vitro.
Molecular Plant-microbe Interactions | 2007
David Reboutier; Cécile Frankart; Joël Briand; Bernadette Biligui; Sandrine Laroche; Jean-Pierre Rona; Marie-Anne Barny; François Bouteau
Erwinia amylovora is a gram-negative necrogenic bacterium causing fire blight of the Maloideae subfamily of Rosaceae such as apple and pear. It provokes progressive necrosis in aerial parts of susceptible host plants (compatible interaction) and a hypersensitive reaction (HR) when infiltrated in nonhost plants (incompatible interaction). The HrpN(ea) harpin is a type three secretion system effector secreted by E. amylovora. This protein is involved in pathogenicity and HR-eliciting capacity of E. amylovora. In the present study, we showed that, in nonhost Arabidopsis thaliana cells, purified HrpN(ea) induces cell death and H2O2 production, two nonhost resistance responses, but failed to induce such responses in host MM106 apple cells. Moreover, HrpN(ea) induced an increase in anion current in host MM106 apple cells, at the opposite of the decrease of anion current previously shown to be necessary to induce cell death in nonhost A. thaliana cells. These results suggest that HrpN(ea) induced different signaling pathways, which could account for early induced compatible or incompatible interaction development.
Molecular Plant-microbe Interactions | 2012
Manon Moreau; Alexandre Degrave; Régine Vedel; Frédérique Bitton; Oriane Patrit; Jean-Pierre Renou; Marie-Anne Barny; Mathilde Fagard
Erwinia amylovora causes fire blight in rosaceous plants. In nonhost Arabidopsis thaliana, E. amylovora triggers necrotic symptoms associated with transient bacterial multiplication, suggesting either that A. thaliana lacks a susceptibility factor or that it actively restricts E. amylovora growth. Inhibiting plant protein synthesis at the time of infection led to an increase in necrosis and bacterial multiplication and reduced callose deposition, indicating that A. thaliana requires active protein synthesis to restrict E. amylovora growth. Analysis of the callose synthase-deficient pmr4-1 mutant indicated that lack of callose deposition alone did not lead to increased sensitivity to E. amylovora. Transcriptome analysis revealed that approximately 20% of the genes induced following E. amylovora infection are related to defense and signaling. Analysis of mutants affected in NDR1 and EDS1, two main components of the defense-gene activation observed, revealed that E. amylovora multiplied ten times more in the eds1-2 mutant than in the wild type but not in the ndr1-1 mutant. Analysis of mutants affected in three WRKY transcription factors showing EDS1-dependent activation identified WRKY46 and WRKY54 as positive regulators and WRKY70 as a negative regulator of defense against E. amylovora. Altogether, we show that EDS1 is a positive regulator of nonhost resistance against E. amylovora in A. thaliana and hypothesize that it controls the production of several effective defenses against E. amylovora through the action of WRKY46 and WRKY54, while WRKY70 acts as a negative regulator.
Molecular Plant-microbe Interactions | 2008
Alexandre Degrave; Mathilde Fagard; Claude Perino; Marie-Noëlle Brisset; S. Gaubert; S. Laroche; Oriane Patrit; Marie-Anne Barny
Erwinia amylovora is the bacterium responsible for fire blight, a necrotic disease affecting plants of the rosaceous family. E. amylovora pathogenicity requires a functional type three secretion system (T3SS). We show here that E. amylovora triggers a T3SS-dependent cell death on Arabidopsis thaliana. The plants respond by inducing T3SS-dependent defense responses, including salicylic acid (SA)-independent callose deposition, activation of the SA defense pathway, reactive oxygen species (ROS) accumulation, and part of the jasmonic acid/ethylene defense pathway. Several of these reactions are similar to what is observed in host plants. We show that the cell death triggered by E. amylovora on A. thaliana could not be simply explained by the recognition of AvrRpt2 ea by the resistance gene product RPS2. We then analyzed the role of type three-secreted proteins (T3SPs) DspA/E, HrpN, and HrpW in the induction of cell death and defense reactions in A. thaliana following infection with the corresponding E. amylovora mutant strains. HrpN and DspA/E were found to play an important role in the induction of cell death, activation of defense pathways, and ROS accumulation. None of the T3SPs tested played a major role in the induction of SA-independent callose deposition. The relative importance of T3SPs in A. thaliana is correlated with their relative importance in the disease process on host plants, indicating that A. thaliana can be used as a model to study their role.
FEBS Open Bio | 2011
Sabrina Siamer; Oriane Patrit; Mathilde Fagard; Naïma Belgareh-Touzé; Marie-Anne Barny
DspA/E belongs to the AvrE family of type III effector. Effectors of the AvrE family are injected via the T3SS in plant cell and are important to promote bacterial growth following infection and to suppress plant defense responses. Their mode of action in the plant cells is unknown. Here we study the physiological effects induced by dspA/E expression in the yeast Saccharomyces cerevisiae. Expression of dspA/E in the yeast inhibits cell growth. This growth inhibition is associated with perturbations of the actin cytoskeleton and endocytosis.
Biologia Plantarum | 2006
M. Faize; Marie-Noëlle Brisset; C. Perino; B. Vian; Marie-Anne Barny; Jean-Pierre Paulin; M. Tharaud
A regulatory hrpL non-virulent mutant of Erwinia amylovora is effective in controlling fire blight disease when inoculated on apple seedlings simultaneously with the pathogenic parental strain. Mechanisms involved in this protective effect were investigated. The use of two marker genes, uidA and lacZ, expressed in the hrpL mutant and the pathogenic strain, respectively, allowed to localize simultaneously the two inoculated strains in plant tissue. An anti-β-glucuronidase antibody was also used to detect the hrpL mutant. Both techniques indicated that the two strains localized mainly in separate areas of the leaf tissue. In addition, leaves infiltrated with the hrpL mutant exhibited a significant increase in peroxidase activity in contrast to a hrp secretion mutant known to be less effective in the protection. It is suggested that protection obtained with the hrpL mutant relies on the physical separation between the mutant and the parental strain after co-inoculation and the rapid and sustained activation of plant defense mechanisms in reactive tissue, i.e. not invaded by the virulent strain.
Fems Microbiology Letters | 2013
Sabrina Siamer; St ephane Gaubert; Tristan Boureau; Marie-No€ elle Brisset; Marie-Anne Barny
The bacterium Erwinia amylovora causes fire blight, an invasive disease that threatens apple trees, pear trees and other plants of the Rosaceae family. Erwinia amylovora pathogenicity relies on a type III secretion system and on a single effector DspA/E. This effector belongs to the widespread AvrE family of effectors whose biological function is unknown. In this manuscript, we performed a bioinformatic analysis of DspA/E- and AvrE-related effectors. Motif search identified nuclear localization signals, peroxisome targeting signals, endoplasmic reticulum membrane retention signals and leucine zipper motifs, but none of these motifs were present in all the AvrE-related effectors analysed. Protein threading analysis, however, predicted a conserved double β-propeller domain in the N-terminal part of all the analysed effector sequences. We then performed a random pentapeptide mutagenesis of DspA/E, which led to the characterization of 13 new altered proteins with a five amino acids insertion. Eight harboured the insertion inside the predicted β-propeller domain and six of these eight insertions impaired DspA/E stability or function. Conversely, the two remaining insertions generated proteins that were functional and abundantly secreted in the supernatant suggesting that these two insertions stabilized the protein.
Fems Microbiology Letters | 2006
Sophie Cesbron; Jean-Pierre Paulin; Michel Tharaud; Marie-Anne Barny; Marie-Noëlle Brisset