Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie B. Iversen is active.

Publication


Featured researches published by Marie B. Iversen.


Journal of Immunology | 2008

An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity.

Nina Ank; Marie B. Iversen; Christina Bartholdy; Peter Staeheli; Rune Hartmann; Uffe Birk Jensen; Frederik Dagnæs-Hansen; Allan Randrup Thomsen; Zhi Chen; Harald S. Haugen; Kevin M. Klucher; Søren R. Paludan

Type III IFNs (IFN-λ/IL-28/29) are cytokines with type I IFN-like antiviral activities, which remain poorly characterized. We herein show that most cell types expressed both types I and III IFNs after TLR stimulation or virus infection, whereas the ability of cells to respond to IFN-λ was restricted to a narrow subset of cells, including plasmacytoid dendritic cells and epithelial cells. To examine the role of type III IFN in antiviral defense, we generated IL-28Rα-deficient mice. These mice were indistinguishable from wild-type mice with respect to clearance of a panel of different viruses, whereas mice lacking the type I IFN receptor (IFNAR−/−) were significantly impaired. However, the strong antiviral activity evoked by treatment of mice with TLR3 or TLR9 agonists was significantly reduced in both IL-28RA−/− and IFNAR−/− mice. The type I IFN receptor system has been shown to mediate positive feedback on IFN-αβ expression, and we found that the type I IFN receptor system also mediates positive feedback on IFN-λ expression, whereas IL-28Rα signaling does not provide feedback on either type I or type III IFN expression in vivo. Finally, using bone-marrow chimeric mice we showed that TLR-activated antiviral defense requires expression of IL-28Rα only on nonhemopoietic cells. In this compartment, epithelial cells responded to IFN-λ and directly restricted virus replication. Our data suggest type III IFN to target a specific subset of cells and to contribute to the antiviral response evoked by TLRs.


Journal of Immunology | 2013

Proteasomal Degradation of Herpes Simplex Virus Capsids in Macrophages Releases DNA to the Cytosol for Recognition by DNA Sensors

Kristy A. Horan; Kathrine Hansen; Martin R. Jakobsen; Christian K. Holm; Stine Søby; Leonie Unterholzner; Mikayla R. Thompson; John A. West; Marie B. Iversen; Simon B. Rasmussen; Svend Ellermann-Eriksen; Evelyn A. Kurt-Jones; Santo Landolfo; Blossom Damania; Jesper Melchjorsen; Andrew G. Bowie; Katherine A. Fitzgerald; Søren R. Paludan

The innate immune system is important for control of infections, including herpesvirus infections. Intracellular DNA potently stimulates antiviral IFN responses. It is known that plasmacytoid dendritic cells sense herpesvirus DNA in endosomes via TLR9 and that nonimmune tissue cells can sense herpesvirus DNA in the nucleus. However, it remains unknown how and where myeloid cells, such as macrophages and conventional dendritic cells, detect infections with herpesviruses. In this study, we demonstrate that the HSV-1 capsid was ubiquitinated in the cytosol and degraded by the proteasome, hence releasing genomic DNA into the cytoplasm for detection by DNA sensors. In this context, the DNA sensor IFN-γ–inducible 16 is important for induction of IFN-β in human macrophages postinfection with HSV-1 and CMV. Viral DNA localized to the same cytoplasmic regions as did IFN-γ–inducible 16, with DNA sensing being independent of viral nuclear entry. Thus, proteasomal degradation of herpesvirus capsids releases DNA to the cytoplasm for recognition by DNA sensors.


Journal of Clinical Investigation | 2012

TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice

Line S. Reinert; Louis Andreas Harder; Christian K. Holm; Marie B. Iversen; Kristy A. Horan; Frederik Dagnæs-Hansen; Benedicte Parm Ulhøi; Thomas Hellesøe Holm; Trine H. Mogensen; Trevor Owens; Jens R. Nyengaard; Allan Randrup Thomsen; Søren R. Paludan

Herpes simplex viruses (HSVs) are highly prevalent neurotropic viruses. While they can replicate lytically in cells of the epithelial lineage, causing lesions on mucocutaneous surfaces, HSVs also establish latent infections in neurons, which act as reservoirs of virus for subsequent reactivation events. Immunological control of HSV involves activation of innate immune pattern-recognition receptors such as TLR3, which detects double-stranded RNA and induces type I IFN expression. Humans with defects in the TLR3/IFN pathway have an elevated susceptibility to HSV infections of the CNS. However, it is not known what cell type mediates the role of TLR3 in the immunological control of HSV, and it is not known whether TLR3 sensing occurs prior to or after CNS entry. Here, we show that in mice TLR3 provides early control of HSV-2 infection immediately after entry into the CNS by mediating type I IFN responses in astrocytes. Tlr3-/- mice were hypersusceptible to HSV-2 infection in the CNS after vaginal inoculation. HSV-2 exhibited broader neurotropism in Tlr3-/- mice than it did in WT mice, with astrocytes being most abundantly infected. Tlr3-/- mice did not exhibit a global defect in innate immune responses to HSV, but astrocytes were defective in HSV-induced type I IFN production. Thus, TLR3 acts in astrocytes to sense HSV-2 infection immediately after entry into the CNS, possibly preventing HSV from spreading beyond the neurons mediating entry into the CNS.


Journal of Interferon and Cytokine Research | 2010

Mechanisms of Type III Interferon Expression

Marie B. Iversen; Søren R. Paludan

Type III interferons (IFNs; IFN-lambda) are antiviral cytokines with type I IFN-like biological functions, including antiviral activity. In this article we review the literature on IFN-lambda expression and propose that important differences exist between the mechanisms governing expression of the different classes of IFNs. Importantly, while IFN-beta is induced by coordinated action of a multifactor enhanceosome, and IFN-alpha expression is activated by multiple IFN regulatory factor (IRF)-binding cis-promoter elements, the type III IFNs are induced through independent actions of IRFs and nuclear factor-kappaB. Although these differences may appear minor at first glance, we propose that IFN-lambda expression is more flexible than IFN-alpha/beta expression, which could allow expression of type III IFNs in response to a wider range of stimuli compared with type I IFNs. Moreover, such a mechanism of induction will potentially render expression of type III IFNs less sensitive to microbial evasion strategies targeting the IRF pathway. Thus, the mechanisms governing type III IFN expression play an important part in dictating the biology of this antiviral cytokine.


Journal of Virology | 2010

Expression of Type III Interferon (IFN) in the Vaginal Mucosa Is Mediated Primarily by Dendritic Cells and Displays Stronger Dependence on NF-κB than Type I IFNs

Marie B. Iversen; Nina Ank; Jesper Melchjorsen; Søren R. Paludan

ABSTRACT Interferons (IFNs) are induced as an initial response to viral infection after recognition of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). Here, we report that different PAMPs induce type I and III IFN expression at different ratios after mucosal administration in the vaginas of mice and that Toll-like receptor 9 (TLR9) stimulation evokes a particularly strong IFN-λ response, which is essential for optimal antiviral protection. Depletion of CD11c+ cells in vivo revealed that dendritic cells (DCs) in the vaginal epithelium are a key source of type I and III IFNs during herpes simplex virus infection and after specific stimulation of TLR9. A comparison of the signaling pathways activated by TLR9 and cytoplasmic PRRs, which induced lower levels of IFN-λ, revealed that high-level induction of IFN-λ correlated with strong activation of NF-κB p65. Inhibition of the NF-κB and interferon regulatory factor 3 (IRF-3) pathways with the NEMO-binding domain peptide and small interfering RNA (siRNA), respectively, revealed that transcription of the type III IFN genes was more dependent on the NF-κB pathway than that of the type I IFN genes, which relied more on the IRF system. Thus, the type I and III IFN genes are not induced through entirely identical pathways, which indicates differential expression of these two types of IFNs under certain conditions.


Nature Immunology | 2016

An innate antiviral pathway acting before interferons at epithelial surfaces

Marie B. Iversen; Line S. Reinert; Martin K. Thomsen; Ieva Bagdonaite; Ramya Nandakumar; Natalia Cheshenko; Thaneas Prabakaran; Sergey Y. Vakhrushev; Malgosha Krzyzowska; Sine K. Kratholm; Fernando Ruiz-Perez; Steen V. Petersen; Stanislas Goriely; Bo Martin Bibby; Kristina Eriksson; Jürgen Ruland; Allan Randrup Thomsen; Betsy C. Herold; Hans H. Wandall; Sebastian Frische; Christian K. Holm; Søren R. Paludan

Mucosal surfaces are exposed to environmental substances and represent a major portal of entry for microorganisms. The innate immune system is responsible for early defense against infections and it is believed that the interferons (IFNs) constitute the first line of defense against viruses. Here we identify an innate antiviral pathway that works at epithelial surfaces before the IFNs. The pathway is activated independently of known innate sensors of viral infections through a mechanism dependent on viral O-linked glycans, which induce CXCR3 chemokines and stimulate antiviral activity in a manner dependent on neutrophils. This study therefore identifies a previously unknown layer of antiviral defense that exerts its action on epithelial surfaces before the classical IFN response is operative.


Immunobiology | 2015

NKT cell activation by local α-galactosylceramide administration decreases susceptibility to HSV-2 infection

Marie B. Iversen; Simon K. Jensen; Anne Louise Hansen; Henriette Winther; Shohreh Issazadeh-Navikas; Line S. Reinert; Christian K. Holm

NKT cells are a subgroup of T cells, which express a restricted TCR repertoire and are critical for the innate immune responses to viral infections. Activation of NKT cells depends on the major histocompatibility complex-related molecule CD1d, which presents bioactive lipids to NKT cells. The marine sponge derived lipid αGalCer has recently been demonstrated as a specific agonist for activation of human and murine NKT cells. In the present study we investigated the applicability of αGalCer pre-treatment for immune protection against intra-vaginal HSV-2 infection. We found that C57BL/6 WT mice that received local pre-treatment with αGalCer prior to intra-vaginal HSV-2 infection had a lower mean disease score, mortality and viral load in the vagina following infection, compared to mice that did not receive αGalCer pre-treatment. Further, we found increased numbers of CD45 and NK1.1 positive cells in vaginal tissue and elevated levels of IFN-γ in the vaginal tissue and in vaginal fluids 24h after αGalCer pre-treatment. Collectively our data demonstrate a protective effect of αGalCer induced activation of NKT cells in the innate immune protection against viral infection.


PLOS ONE | 2013

Interleukin-21 receptor signalling is important for innate immune protection against HSV-2 infections.

Sine K. Kratholm; Marie B. Iversen; Line S. Reinert; Simon K. Jensen; Marianne Hokland; Tom Andersen; Andrew Rankin; Deborah Young; Sebastian Frische; Søren R. Paludan; Christian K. Holm

Interleukin (IL) -21 is produced by Natural Killer T (NKT) cells and CD4+ T cells and is produced in response to virus infections, where IL-21 has been shown to be essential in adaptive immune responses. Cells from the innate immune system such as Natural Killer (NK) cells and macrophages are also important in immune protection against virus. These cells express the IL-21 receptor (IL-21R) and respond to IL-21 with increased cytotoxicity and cytokine production. Currently, however it is not known whether IL-21 plays a significant role in innate immune responses to virus infections. The purpose of this study was to investigate the role of IL-21 and IL-21R in the innate immune response to a virus infection. We used C57BL/6 wild type (WT) and IL-21R knock out (KO) mice in a murine vaginal Herpes Simplex Virus type 2 (HSV-2) infection model to show that IL-21 – IL-21R signalling is indeed important in innate immune responses against HSV-2. We found that the IL-21R was expressed in the vaginal epithelium in uninfected (u.i) WT mice, and expression increased early after HSV-2 infection. IL-21R KO mice exhibited increased vaginal viral titers on day 2 and 3 post infection (p.i.) and subsequently developed significantly higher disease scores and a lower survival rate compared to WT mice. In addition, WT mice infected with HSV-2 receiving intra-vaginal pre-treatment with murine recombinant IL-21 (mIL-21) had decreased vaginal viral titers on day 2 p.i., significantly lower disease scores, and a higher survival rate compared to infected untreated WT controls. Collectively our data demonstrate the novel finding that the IL-21R plays a critical role in regulating innate immune responses against HSV-2 infection.


Free Radical Biology and Medicine | 2016

Extracellular superoxide dismutase is present in secretory vesicles of human neutrophils and released upon stimulation

Marie B. Iversen; Randi H. Gottfredsen; Ulrike G. Larsen; Jan J. Enghild; Jeppe Praetorius; Niels Borregaard; Steen V. Petersen

Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme present in the extracellular matrix (ECM), where it provides protection against oxidative degradation of matrix constituents including type I collagen and hyaluronan. The enzyme is known to associate with macrophages and polymorphonuclear leukocytes (neutrophils) and increasing evidence supports a role for EC-SOD in the development of an inflammatory response. Here we show that human EC-SOD is present at the cell surface of isolated neutrophils as well as stored within secretory vesicles. Interestingly, we find that EC-SOD mRNA is absent throughout neutrophil maturation indicating that the protein is synthesized by other cells and subsequently endocytosed by the neutrophil. When secretory vesicles were mobilized by neutrophil stimulation using formyl-methionyl-leucyl-phenylalanine (fMLF) or phorbol 12-myristate 13-acetate (PMA), the protein was released into the extracellular space and found to associate with DNA released from stimulated cells. The functional consequences were evaluated by the use of neutrophils isolated from wild-type and EC-SOD KO mice, and showed that EC-SOD release significantly reduce the level of superoxide in the extracellular space, but does not affect the capacity to generate neutrophil extracellular traps (NETs). Consequently, our data signifies that EC-SOD released from activated neutrophils affects the redox conditions of the extracellular space and may offer protection against highly reactive oxygen species such as hydroxyl radicals otherwise generated as a result of respiratory burst activity of activated neutrophils.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling.

Anne Louise Hansen; Gregory J. Buchan; Michael Rühl; Kojiro Mukai; Sonia R. Salvatore; Emari Ogawa; Sidsel D. Andersen; Marie B. Iversen; Anne L. Thielke; Camilla Gunderstofte; Mona Motwani; Charlotte T. Møller; Andreas S. Jakobsen; Katherine A. Fitzgerald; Jessica Roos; Rongtuan Lin; Thorsten J. Maier; Raphaela Goldbach-Mansky; Cathrine Miner; Wei Qian; Jonathan J. Miner; Rachel E. Rigby; Jan Rehwinkel; Martin R. Jakobsen; Hiroyuki Arai; Tomohiko Taguchi; Francisco J. Schopfer; David Olagnier; Christian K. Holm

Significance Several chronic inflammatory conditions have recently been shown to depend on abnormally high activity of the signaling protein stimulator of IFN genes (STING). These conditions include examples from systemic lupus erythematosus, Aicardi–Goutiéres syndrome, and STING-associated vasculopathy with onset in infancy. The involvement of STING in these diseases points to an unmet demand to identify inhibitors of STING signaling, which could form the basis of anti-STING therapeutics. With this report, we identify distinct endogenously formed lipid species as potent inhibitors of STING signaling—and propose that these lipids could have pharmaceutical potential for treatment of STING-dependent inflammatory diseases. The adaptor molecule stimulator of IFN genes (STING) is central to production of type I IFNs in response to infection with DNA viruses and to presence of host DNA in the cytosol. Excessive release of type I IFNs through STING-dependent mechanisms has emerged as a central driver of several interferonopathies, including systemic lupus erythematosus (SLE), Aicardi–Goutières syndrome (AGS), and stimulator of IFN genes-associated vasculopathy with onset in infancy (SAVI). The involvement of STING in these diseases points to an unmet need for the development of agents that inhibit STING signaling. Here, we report that endogenously formed nitro-fatty acids can covalently modify STING by nitro-alkylation. These nitro-alkylations inhibit STING palmitoylation, STING signaling, and subsequently, the release of type I IFN in both human and murine cells. Furthermore, treatment with nitro-fatty acids was sufficient to inhibit production of type I IFN in fibroblasts derived from SAVI patients with a gain-of-function mutation in STING. In conclusion, we have identified nitro-fatty acids as endogenously formed inhibitors of STING signaling and propose for these lipids to be considered in the treatment of STING-dependent inflammatory diseases.

Collaboration


Dive into the Marie B. Iversen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katherine A. Fitzgerald

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge