Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie Ballif is active.

Publication


Featured researches published by Marie Ballif.


Nature Genetics | 2015

Evolutionary history and global spread of the Mycobacterium tuberculosis Beijing lineage

Matthias Merker; Camille Blin; Stefano Mona; Nicolas Duforet-Frebourg; Sophie Lecher; Eve Willery; Michael G. B. Blum; Sabine Rüsch-Gerdes; Igor Mokrousov; Eman Aleksic; Caroline Allix-Béguec; Annick Antierens; Ewa Augustynowicz-Kopeć; Marie Ballif; Francesca Barletta; Hans P eter Beck; Clifton E. Barry; Maryline Bonnet; Emanuele Borroni; Isolina Campos-Herrero; Daniela M. Cirillo; Helen Cox; Suzanne M. Crowe; Valeriu Crudu; Roland Diel; Francis Drobniewski; Maryse Fauville-Dufaux; Sebastien Gagneux; Solomon Ghebremichael; M. Hanekom

Mycobacterium tuberculosis strains of the Beijing lineage are globally distributed and are associated with the massive spread of multidrug-resistant (MDR) tuberculosis in Eurasia. Here we reconstructed the biogeographical structure and evolutionary history of this lineage by genetic analysis of 4,987 isolates from 99 countries and whole-genome sequencing of 110 representative isolates. We show that this lineage initially originated in the Far East, from where it radiated worldwide in several waves. We detected successive increases in population size for this pathogen over the last 200 years, practically coinciding with the Industrial Revolution, the First World War and HIV epidemics. Two MDR clones of this lineage started to spread throughout central Asia and Russia concomitantly with the collapse of the public health system in the former Soviet Union. Mutations identified in genes putatively under positive selection and associated with virulence might have favored the expansion of the most successful branches of the lineage.


Nature Genetics | 2016

Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages

David Stucki; Daniela Brites; Leïla Jeljeli; Mireia Coscolla; Qingyun Liu; Andrej Trauner; Lukas Fenner; Liliana K. Rutaihwa; Sonia Borrell; Tao Luo; Qian Gao; Midori Kato-Maeda; Marie Ballif; Matthias Egger; Rita Macedo; Helmi Mardassi; Milagros Moreno; Griselda Tudo Vilanova; Janet Fyfe; Maria Globan; Jackson Thomas; Frances Jamieson; Jennifer L. Guthrie; Adwoa Asante-Poku; Dorothy Yeboah-Manu; Eddie M. Wampande; Willy Ssengooba; Moses Joloba; W. Henry Boom; Indira Basu

Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.


The Journal of Infectious Diseases | 2015

Tracking a Tuberculosis Outbreak Over 21 Years: Strain-Specific Single-Nucleotide Polymorphism Typing Combined With Targeted Whole-Genome Sequencing

David Stucki; Marie Ballif; Thomas Bodmer; Mireia Coscolla; Anne-Marie Maurer; Sara Christine Droz; Christa Butz; Sonia Borrell; Christel Längle; Julia Feldmann; Hansjakob Furrer; Carlo Mordasini; Peter Helbling; Hans L. Rieder; Matthias Egger; Sebastien Gagneux; Lukas Fenner

BACKGROUND Whole-genome sequencing (WGS) is increasingly used in molecular-epidemiological investigations of bacterial pathogens, despite cost- and time-intensive analyses. We combined strain-specific single-nucleotide polymorphism (SNP) typing and targeted WGS to investigate a tuberculosis cluster spanning 21 years in Bern, Switzerland. METHODS On the basis of genome sequences of 3 historical outbreak Mycobacterium tuberculosis isolates, we developed a strain-specific SNP-typing assay to identify further cases. We screened 1642 patient isolates and performed WGS on all identified cluster isolates. We extracted SNPs to construct genomic networks. Clinical and social data were retrospectively collected. RESULTS We identified 68 patients associated with the outbreak strain. Most received a tuberculosis diagnosis in 1991-1995, but cases were observed until 2011. Two thirds were homeless and/or substance abusers. Targeted WGS revealed 133 variable SNP positions among outbreak isolates. Genomic network analyses suggested a single origin of the outbreak, with subsequent division into 3 subclusters. Isolates from patients with confirmed epidemiological links differed by 0-11 SNPs. CONCLUSIONS Strain-specific SNP genotyping allowed rapid and inexpensive identification of M. tuberculosis outbreak isolates in a population-based strain collection. Subsequent targeted WGS provided detailed insights into transmission dynamics. This combined approach could be applied to track bacterial pathogens in real time and at high resolution.


PLOS Genetics | 2013

HIV Infection Disrupts the Sympatric Host–Pathogen Relationship in Human Tuberculosis

Lukas Fenner; Matthias Egger; Thomas Bodmer; Hansjakob Furrer; Marie Ballif; Manuel Battegay; Peter Helbling; Jan Fehr; Thomas Gsponer; Hans L. Rieder; Marcel Zwahlen; Matthias Hoffmann; Enos Bernasconi; Matthias Cavassini; Alexandra Calmy; Marisa Dolina; Reno Frei; Jean-Paul Janssens; Sonia Borrell; David Stucki; Jacques Schrenzel; Erik C. Böttger; Sebastien Gagneux

The phylogeographic population structure of Mycobacterium tuberculosis suggests local adaptation to sympatric human populations. We hypothesized that HIV infection, which induces immunodeficiency, will alter the sympatric relationship between M. tuberculosis and its human host. To test this hypothesis, we performed a nine-year nation-wide molecular-epidemiological study of HIV–infected and HIV–negative patients with tuberculosis (TB) between 2000 and 2008 in Switzerland. We analyzed 518 TB patients of whom 112 (21.6%) were HIV–infected and 233 (45.0%) were born in Europe. We found that among European-born TB patients, recent transmission was more likely to occur in sympatric compared to allopatric host–pathogen combinations (adjusted odds ratio [OR] 7.5, 95% confidence interval [95% CI] 1.21–infinity, p = 0.03). HIV infection was significantly associated with TB caused by an allopatric (as opposed to sympatric) M. tuberculosis lineage (OR 7.0, 95% CI 2.5–19.1, p<0.0001). This association remained when adjusting for frequent travelling, contact with foreigners, age, sex, and country of birth (adjusted OR 5.6, 95% CI 1.5–20.8, p = 0.01). Moreover, it became stronger with greater immunosuppression as defined by CD4 T-cell depletion and was not the result of increased social mixing in HIV–infected patients. Our observation was replicated in a second independent panel of 440 M. tuberculosis strains collected during a population-based study in the Canton of Bern between 1991 and 2011. In summary, these findings support a model for TB in which the stable relationship between the human host and its locally adapted M. tuberculosis is disrupted by HIV infection.


BMC Microbiology | 2012

Drug resistance-conferring mutations in Mycobacterium tuberculosis from Madang, Papua New Guinea

Marie Ballif; Paul Harino; Serej Ley; Mireia Coscolla; Stefan Niemann; Robyn Carter; Christopher Coulter; Sonia Borrell; Peter Siba; Suparat Phuanukoonnon; Sebastien Gagneux; Hans-Peter Beck

BackgroundMonitoring drug resistance in Mycobacterium tuberculosis is essential to curb the spread of tuberculosis (TB). Unfortunately, drug susceptibility testing is currently not available in Papua New Guinea (PNG) and that impairs TB control in this country. We report for the first time M. tuberculosis mutations associated with resistance to first and second-line anti-TB drugs in Madang, PNG. A molecular cluster analysis was performed to identify M. tuberculosis transmission in that region.ResultsPhenotypic drug susceptibility tests showed 15.7% resistance to at least one drug and 5.2% multidrug resistant (MDR) TB. Rifampicin resistant strains had the rpoB mutations D516F, D516Y or S531L; Isoniazid resistant strains had the mutations katG S315T or inhA promoter C15T; Streptomycin resistant strains had the mutations rpsL K43R, K88Q, K88R), rrs A514C or gidB V77G. The molecular cluster analysis indicated evidence for transmission of resistant strain.ConclusionsWe observed a substantial rate of MDR-TB in the Madang area of PNG associated with mutations in specific genes. A close monitoring of drug resistance is therefore urgently required, particularly in the presence of drug-resistant M. tuberculosis transmission. In the absence of phenotypic drug susceptibility testing in PNG, molecular assays for drug resistance monitoring would be of advantage.


Journal of Clinical Microbiology | 2016

Standard Genotyping Overestimates Transmission of Mycobacterium tuberculosis among Immigrants in a Low-Incidence Country

David Stucki; Marie Ballif; Matthias Egger; Hansjakob Furrer; Ekkehardt Altpeter; Manuel Battegay; Sara Christine Droz; Thomas Bruderer; Mireia Coscolla; Sonia Borrell; Kathrin Zürcher; Jean-Paul Janssens; Alexandra Calmy; Jesica Mazza Stalder; Katia Jaton; Hans L. Rieder; Gaby E. Pfyffer; Hans H Siegrist; Matthias Hoffmann; Jan Fehr; Marisa Dolina; Reno Frei; Jacques Schrenzel; Erik C. Böttger; Sebastien Gagneux; Lukas Fenner

ABSTRACT Immigrants from regions with a high incidence of tuberculosis (TB) are a risk group for TB in low-incidence countries such as Switzerland. In a previous analysis of a nationwide collection of 520 Mycobacterium tuberculosis isolates from 2000 to 2008, we identified 35 clusters comprising 90 patients based on standard genotyping (24-locus mycobacterial interspersed repetitive-unit–variable-number tandem-repeat [MIRU-VNTR] typing and spoligotyping). Here, we used whole-genome sequencing (WGS) to revisit these transmission clusters. Genome-based transmission clusters were defined as isolate pairs separated by ≤12 single nucleotide polymorphisms (SNPs). WGS confirmed 17/35 (49%) MIRU-VNTR typing clusters; the other 18 clusters contained pairs separated by >12 SNPs. Most transmission clusters (3/4) of Swiss-born patients were confirmed by WGS, as opposed to 25% (4/16) of the clusters involving only foreign-born patients. The overall clustering proportion was 17% (90 patients; 95% confidence interval [CI], 14 to 21%) by standard genotyping but only 8% (43 patients; 95% CI, 6 to 11%) by WGS. The clustering proportion was 17% (67/401; 95% CI, 13 to 21%) by standard genotyping and 7% (26/401; 95% CI, 4 to 9%) by WGS among foreign-born patients and 19% (23/119; 95% CI, 13 to 28%) and 14% (17/119; 95% CI, 9 to 22%), respectively, among Swiss-born patients. Using weighted logistic regression, we found weak evidence of an association between birth origin and transmission (adjusted odds ratio of 2.2 and 95% CI of 0.9 to 5.5 comparing Swiss-born patients to others). In conclusion, standard genotyping overestimated recent TB transmission in Switzerland compared to WGS, particularly among immigrants from regions with a high TB incidence, where genetically closely related strains often predominate. We recommend the use of WGS to identify transmission clusters in settings with a low incidence of TB.


International Journal of Systematic and Evolutionary Microbiology | 2011

Mycobacterium algericum sp. nov., a novel rapidly growing species related to the Mycobacterium terrae complex and associated with goat lung lesions.

Naima Sahraoui; Marie Ballif; Samir Zelleg; Nadir Yousfi; Claudia Ritter; Ute Friedel; Beat Amstutz; Djamel Yala; Fadila Boulahbal; Djamel Guetarni; Jakob Zinsstag; Peter M. Keller

A previously undescribed, rapid-growing, non-chromogenic Mycobacterium isolate from a goat lung lesion in Algeria is reported. Biochemical and molecular tools were used for its complete description and showed its affiliation to the Mycobacterium terrae complex. 16S rRNA, rpoB and hsp65 gene sequences were unique. Phylogenetic analyses showed a close relationship with M. terrae sensu stricto and Mycobacterium senuense. Culture and biochemical characteristics were generally similar to those of M. terrae and M. senuense. However, in contrast to M. terrae and M. senuense, the isolate was positive for urease production and had faster growth. The mycolic acid profile was distinct from those of M. terrae and M. senuense, thus further supporting the new taxonomic position of the isolate. We propose the name Mycobacterium algericum sp. nov. for this novel species. The type strain is TBE 500028/10(T) ( = Bejaia(T) = CIP 110121(T) = DSM 45454(T)).


PLOS ONE | 2009

Impact of Previous Virological Treatment Failures and Adherence on the Outcome of Antiretroviral Therapy in 2007

Marie Ballif; Bruno Ledergerber; Manuel Battegay; Matthias Cavassini; Enos Bernasconi; Patrick Schmid; Bernard Hirschel; Hansjakob Furrer; Martin Rickenbach; Milos Opravil; Rainer Weber

Background Combination antiretroviral treatment (cART) has been very successful, especially among selected patients in clinical trials. The aim of this study was to describe outcomes of cART on the population level in a large national cohort. Methods Characteristics of participants of the Swiss HIV Cohort Study on stable cART at two semiannual visits in 2007 were analyzed with respect to era of treatment initiation, number of previous virologically failed regimens and self reported adherence. Starting ART in the mono/dual era before HIV-1 RNA assays became available was counted as one failed regimen. Logistic regression was used to identify risk factors for virological failure between the two consecutive visits. Results Of 4541 patients 31.2% and 68.8% had initiated therapy in the mono/dual and cART era, respectively, and been on treatment for a median of 11.7 vs. 5.7 years. At visit 1 in 2007, the mean number of previous failed regimens was 3.2 vs. 0.5 and the viral load was undetectable (<50 copies/ml) in 84.6% vs. 89.1% of the participants, respectively. Adjusted odds ratios of a detectable viral load at visit 2 for participants from the mono/dual era with a history of 2 and 3, 4, >4 previous failures compared to 1 were 0.9 (95% CI 0.4–1.7), 0.8 (0.4–1.6), 1.6 (0.8–3.2), 3.3 (1.7–6.6) respectively, and 2.3 (1.1–4.8) for >2 missed cART doses during the last month, compared to perfect adherence. From the cART era, odds ratios with a history of 1, 2 and >2 previous failures compared to none were 1.8 (95% CI 1.3–2.5), 2.8 (1.7–4.5) and 7.8 (4.5–13.5), respectively, and 2.8 (1.6–4.8) for >2 missed cART doses during the last month, compared to perfect adherence. Conclusions A higher number of previous virologically failed regimens, and imperfect adherence to therapy were independent predictors of imminent virological failure.


Malaria Journal | 2010

Monitoring of malaria parasite resistance to chloroquine and sulphadoxine-pyrimethamine in the Solomon Islands by DNA microarray technology

Marie Ballif; Jeffrey Hii; Jutta Marfurt; Andreas Crameri; Adam Fafale; Ingrid Felger; Hans-Peter Beck; Blaise Genton

BackgroundLittle information is available on resistance to anti-malarial drugs in the Solomon Islands (SI). The analysis of single nucleotide polymorphisms (SNPs) in drug resistance associated parasite genes is a potential alternative to classical time- and resource-consuming in vivo studies to monitor drug resistance. Mutations in pfmdr1 and pfcrt were shown to indicate chloroquine (CQ) resistance, mutations in pfdhfr and pfdhps indicate sulphadoxine-pyrimethamine (SP) resistance, and mutations in pfATPase6 indicate resistance to artemisinin derivatives.MethodsThe relationship between the rate of treatment failure among 25 symptomatic Plasmodium falciparum-infected patients presenting at the clinic and the pattern of resistance-associated SNPs in P. falciparum infecting 76 asymptomatic individuals from the surrounding population was investigated. The study was conducted in the SI in 2004. Patients presenting at a local clinic with microscopically confirmed P. falciparum malaria were recruited and treated with CQ+SP. Rates of treatment failure were estimated during a 28-day follow-up period. In parallel, a DNA microarray technology was used to analyse mutations associated with CQ, SP, and artemisinin derivative resistance among samples from the asymptomatic community. Mutation and haplotype frequencies were determined, as well as the multiplicity of infection.ResultsThe in vivo study showed an efficacy of 88% for CQ+SP to treat P. falciparum infections. DNA microarray analyses indicated a low diversity in the parasite population with one major haplotype present in 98.7% of the cases. It was composed of fixed mutations at position 86 in pfmdr1, positions 72, 75, 76, 220, 326 and 356 in pfcrt, and positions 59 and 108 in pfdhfr. No mutation was observed in pfdhps or in pfATPase6. The mean multiplicity of infection was 1.39.ConclusionThis work provides the first insight into drug resistance markers of P. falciparum in the SI. The obtained results indicated the presence of a very homogenous P. falciparum population circulating in the community. Although CQ+SP could still clear most infections, seven fixed mutations associated with CQ resistance and two fixed mutations related to SP resistance were observed. Whether the absence of mutations in pfATPase6 indicates the efficacy of artemisinin derivatives remains to be proven.


PLOS Neglected Tropical Diseases | 2013

Molecular Epidemiology and Antibiotic Susceptibility of Livestock Brucella melitensis Isolates from Naryn Oblast, Kyrgyzstan

J. Kasymbekov; Joldoshbek Imanseitov; Marie Ballif; Nadia Schürch; Sandra Paniga; Paola Pilo; Mauro Tonolla; Cinzia Benagli; Kulyash Akylbekova; Zarima Jumakanova; E. Schelling; Jakob Zinsstag

The incidence of human brucellosis in Kyrgyzstan has been increasing in the last years and was identified as a priority disease needing most urgent control measures in the livestock population. The latest species identification of Brucella isolates in Kyrgyzstan was carried out in the 1960s and investigated the circulation of Brucella abortus, B. melitensis, B. ovis, and B. suis. However, supporting data and documentation of that experience are lacking. Therefore, typing of Brucella spp. and identification of the most important host species are necessary for the understanding of the main transmission routes and to adopt an effective brucellosis control policy in Kyrgyzstan. Overall, 17 B. melitensis strains from aborted fetuses of sheep and cattle isolated in the province of Naryn were studied. All strains were susceptible to trimethoprim-sulfamethoxazole, gentamicin, rifampin, ofloxacin, streptomycin, doxycycline, and ciprofloxacin. Multilocus variable number tandem repeat analysis showed low genetic diversity. Kyrgyz strains seem to be genetically associated with the Eastern Mediterranean group of the Brucella global phylogeny. We identified and confirmed transmission of B. melitensis to cattle and a close genetic relationship between B. melitensis strains isolated from sheep sharing the same pasture.

Collaboration


Dive into the Marie Ballif's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebastien Gagneux

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Sonia Borrell

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

David Stucki

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans-Peter Beck

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge