Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie Brázdová is active.

Publication


Featured researches published by Marie Brázdová.


Oncogene | 1999

Effect of transition metals on binding of p53 protein to supercoiled DNA and to consensus sequence in DNA fragments

Emil Paleček; Marie Brázdová; Hana Černocká; Daniel Vlk; Václav Brázda; Bořivoj Vojtěšek

Recently we have shown that wild-type human p53 protein binds preferentially to supercoiled (sc) DNA in vitro in both the presence and absence of the p53 consensus sequence (p53CON). This binding produces a ladder of retarded bands on an agarose gel. Using immunoblotting with the antibody DO-1, we show that the bands obtained correspond to ethidium-stained DNA, suggesting that each band of the ladder contains a DNA-p53 complex. The intensity and the number of these bands are decreased by physiological concentrations of zinc ions. At higher zinc concentrations, binding of p53 to scDNA is completely inhibited. The binding of additional zinc ions to p53 appears much weaker than the binding of the intrinsic zinc ion in the DNA binding site of the core domain. In contrast to previously published data suggesting that 100 μM zinc ions do not influence p53 binding to p53CON in a DNA oligonucleotide, we show that 5 – 20 μM zinc efficiently inhibits binding of p53 to p53CON in DNA fragments. We also show that relatively low concentrations of dithiothreitol but not of 2-mercaptoethanol decrease the concentration of free zinc ions, thereby preventing their inhibitory effect on binding of p53 to DNA. Nickel and cobalt ions inhibit binding of p53 to scDNA and to its consensus sequence in linear DNA fragments less efficiently than zinc; cobalt ions are least efficient, requiring >100 μM Co2+ for full inhibition of p53 binding. Modulation of binding of p53 to DNA by physiological concentrations of zinc might represent a novel pathway that regulates p53 activity in vivo.


Angewandte Chemie | 2013

Vinylsulfonamide and Acrylamide Modification of DNA for Cross‐linking with Proteins

Jitka Dadová; Petr Orság; Radek Pohl; Marie Brázdová; Miroslav Fojta; Michal Hocek

Bioorthogonal covalent cross-linking of DNA-binding proteins (p53) to DNA was achieved through novel DNA probes bearing a reactive vinylsulfonamide (VS) group. The VS-modified dCTP served as building block for polymerase synthesis of modified DNA, which was readily conjugated with cysteine-containing peptides and proteins by Michael addition.


Oncogene | 2004

Enhancement of p53 sequence-specific binding by DNA supercoiling

Emil Paleček; Václav Brázda; Eva B. Jagelská; Petr Pečinka; Lenka Karlovská; Marie Brázdová

Using a new competition assay, we investigated the effect of DNA negative supercoiling on the DNA sequence-specific binding (SSDB) of human wild-type (wt) p53 protein. We found that supercoiled (sc) pBluescript DNAs with different inserted p53 target sequences were stronger competitors than a mixture of scDNA pBluescript with the given 20-mer target oligodeoxynucleotide. ScDNAs were always better competitors than their linearized or relaxed forms. Two DNAs with extruded cruciforms within the target sequence were the best competitors; removal of the cruciforms resulted in a decrease of competitor strength. In contrast to the full-length wt p53, the deletion mutant p53CΔ30 and the p53 core domain (93–312 aa) showed no enhancement of p53 SSDB to scDNA, suggesting that, in addition to the p53 core domain, the C-terminal was involved in this binding. We conclude that cruciforms and DNA bends contribute to the enhancement of p53 SSDB to scDNA and that the DNA supercoiling is an important determinant in the p53 sequence-specific binding. Supercoiling may thus play a significant role in the complex p53-regulatory network.


Nucleic Acids Research | 2009

Modulation of gene expression in U251 glioblastoma cells by binding of mutant p53 R273H to intronic and intergenic sequences

Marie Brázdová; Timo Quante; Lars Tögel; Korden Walter; Christine Loscher; Vlastimil Tichý; Lenka Činčárová; Wolfgang Deppert; Genrich V. Tolstonog

Missense point mutations in the TP53 gene are frequent genetic alterations in human tumor tissue and cell lines derived thereof. Mutant p53 (mutp53) proteins have lost sequence-specific DNA binding, but have retained the ability to interact in a structure-selective manner with non-B DNA and to act as regulators of transcription. To identify functional binding sites of mutp53, we established a small library of genomic sequences bound by p53R273H in U251 human glioblastoma cells using chromatin immunoprecipitation (ChIP). Mutp53 binding to isolated DNA fragments confirmed the specificity of the ChIP. The mutp53 bound DNA sequences are rich in repetitive DNA elements, which are dispersed over non-coding DNA regions. Stable down-regulation of mutp53 expression strongly suggested that mutp53 binding to genomic DNA is functional. We identified the PPARGC1A and FRMD5 genes as p53R273H targets regulated by binding to intronic and intra-genic sequences. We propose a model that attributes the oncogenic functions of mutp53 to its ability to interact with intronic and intergenic non-B DNA sequences and modulate gene transcription via re-organization of chromatin.


Cell Cycle | 2012

Mutant p53 is a transcriptional co-factor that binds to G-rich regulatory regions of active genes and generates transcriptional plasticity

Timo Quante; Benjamin Otto; Marie Brázdová; Iva Kejnovská; Wolfgang Deppert; Genrich V. Tolstonog

The molecular mechanisms underlying mutant p53 (mutp53) “gain-of-function” (GOF) are still insufficiently understood, but there is evidence that mutp53 is a transcriptional regulator that is recruited by specialized transcription factors. Here we analyzed the binding sites of mutp53 and the epigenetic status of mutp53-regulated genes that had been identified by global expression profiling upon depletion of endogenous mutp53 (R273H) expression in U251 glioblastoma cells. We found that mutp53 preferentially and autonomously binds to G/C-rich DNA around transcription start sites (TSS) of many genes characterized by active chromatin marks (H3K4me3) and frequently associated with transcription-competent RNA polymerase II. Mutp53-bound regions overlap predominantly with CpG islands and are enriched in G4-motifs that are prone to form G-quadruplex structures. In line, mutp53 binds and stabilizes a well-characterized G-quadruplex structure in vitro. Hence, we assume that binding of mutp53 to G/C-rich DNA regions associated with a large set of cancer-relevant genes is an initial step in their regulation by mutp53. Using GAS1 and HTR2A as model genes, we show that mutp53 affects several parameters of active transcription. Finally, we discuss a dual mode model of mutp53 GOF, which includes both stochastic and deterministic components.


Analytica Chimica Acta | 2010

A label-free electrochemical test for DNA-binding activities of tumor suppressor protein p53 using immunoprecipitation at magnetic beads.

Kateřina Němcová; Luděk Havran; Peter Šebest; Marie Brázdová; Hana Pivoňková; Miroslav Fojta

In this paper we extend the application area of the label-free structure-sensitive electrochemical DNA sensing with mercury-based electrodes which is for the first time used, in combination with immunoprecipitation at magnetic beads (MB), for the probing of DNA interactions with tumor suppressor protein p53. The technique relies on capture of the p53-DNA complexes at MB via anti-p53 antibodies, followed by salt-induced dissociation of linear DNA from the complex and its voltammetric detection. Competitive binding of p53 to various plasmid DNA substrates, including lin or scDNAs with or without a specific target site, can easily be followed by ex situ electrochemical analysis of DNA recovered from the immunoprecipitated complexes. Compared to gel electrophoresis which is usually applied to analyze different plasmid DNA forms and their complexes with proteins, the electrochemical detection is faster and allows simpler quantitation of DNA containing free ends at submicrogram levels. We demonstrate applicability of the proposed technique to monitor different DNA-binding activities of wild type and mutant p53 proteins.


Analytica Chimica Acta | 2014

Electrochemical sensing of tumor suppressor protein p53-deoxyribonucleic acid complex stability at an electrified interface.

Emil Paleček; Hana Černocká; Veronika Ostatná; Lucie Navrátilová; Marie Brázdová

Electrochemical biosensors have the unique ability to convert biological events directly into electrical signals suitable for parallel analysis. Here we utilize specific properties of constant current chronopotentiometric stripping (CPS) in the analysis of protein and DNA-protein complex nanolayers. Rapid potential changes at high negative current intensities (Istr) in CPS are utilized in the analysis of DNA-protein interactions at thiol-modified mercury electrodes. P53 core domain (p53CD) sequence-specific binding to DNA results in a striking decrease in the electrocatalytic signal of free p53. This decrease is related to changes in the accessibility of the electroactive amino acid residues in the p53CD-DNA complex. By adjusting Istr and temperature, weaker non-specific binding can be eliminated or distinguished from the sequence-specific binding. The method also reflects differences in the stabilities of different sequence-specific complexes, including those containing spacers between half-sites of the DNA consensus sequence. The high resolving power of this method is based on the disintegration of the p53CD-DNA complex by the electric field effects at a negatively charged surface and fine adjustment of the millisecond time intervals for which the complex is exposed to these effects. Picomole amounts of p53 proteins and DNA were used for the analysis at full electrode coverage but we show that even 10-20-fold smaller amounts can be analyzed. Our method cannot however take advantage of very low detection limits of the protein CPS detection because low I(str) intensities are deleterious to the p53CD-DNA complex stability at the electrode surface. These data highlight the utility of developing biosensors offering novel approaches for studying real-time macromolecular protein dynamics.


PLOS ONE | 2013

Preferential Binding of Hot Spot Mutant p53 Proteins to Supercoiled DNA In Vitro and in Cells

Marie Brázdová; Lucie Navrátilová; Vlastimil Tichý; Kateřina Němcová; Matej Lexa; Roman Hrstka; Petr Pečinka; Matej Adámik; Borivoj Vojtesek; Emil Paleček; Wolfgang Deppert; Miroslav Fojta

Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed.


Bioinformatics | 2011

A dynamic programming algorithm for identification of triplex-forming sequences

Matej Lexa; Tomáš Martínek; Ivana Burgetová; Daniel Kopeček; Marie Brázdová

MOTIVATION Current methods for identification of potential triplex-forming sequences in genomes and similar sequence sets rely primarily on detecting homopurine and homopyrimidine tracts. Procedures capable of detecting sequences supporting imperfect, but structurally feasible intramolecular triplex structures are needed for better sequence analysis. RESULTS We modified an algorithm for detection of approximate palindromes, so as to account for the special nature of triplex DNA structures. From available literature, we conclude that approximate triplexes tolerate two classes of errors. One, analogical to mismatches in duplex DNA, involves nucleotides in triplets that do not readily form Hoogsteen bonds. The other class involves geometrically incompatible neighboring triplets hindering proper alignment of strands for optimal hydrogen bonding and stacking. We tested the statistical properties of the algorithm, as well as its correctness when confronted with known triplex sequences. The proposed algorithm satisfactorily detects sequences with intramolecular triplex-forming potential. Its complexity is directly comparable to palindrome searching. AVAILABILITY Our implementation of the algorithm is available at http://www.fi.muni.cz/lexa/triplex as source code and a web-based search tool. The source code compiles into a library providing searching capability to other programs, as well as into a stand-alone command-line application based on this library. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Biochemical Pharmacology | 2003

Recognition of DNA modified by antitumor cisplatin by ''latent'' and ''active'' protein p53

Miroslav Fojta; Hana Pivonkova; Marie Brázdová; Lucie Kovarova; Emil Paleček; Šárka Pospíšilová; Borivoj Vojtesek; Jana Kasparkova; Viktor Brabec

Tumor suppressor protein p53 possesses two DNA-binding sites. One that is located within its core domain is responsible for sequence-specific DNA binding of the protein, non-specific binding to internal segments of single- or double-stranded DNA, and to certain kinds of non-B DNA structures. The other that is contained in the C-terminus of the protein binds to damaged DNA. Binding of active, latent, and in vitro-activated p53 protein to DNA fragments modified by antitumor cisplatin was studied using electrophoretic mobility shift assay in agarose gels and immunoblotting analysis. We found that both latent and active p53 forms bound to random sequences of DNA globally modified by cisplatin with a higher affinity than to unmodified DNA. Interestingly, the latent form exhibited a more pronounced selectivity for platinated DNA than the active p53. Consistently with this observation, the preference of the latent form for platinated DNA decreased as a consequence of the activation of latent p53 by phosphorylation at the protein kinase C site within its C-terminus or by binding of the monoclonal antibody Bp53-10.1. Competition experiments involving a 20-bp consensus sequence of p53 suggested that the p53 core domain was a primary binding site of the active p53 when it bound to DNA fragments lacking consensus sequence, but modified by cisplatin. In addition, the latent protein was found to selectively interact with DNA modified by cisplatin probably via its C-terminus.

Collaboration


Dive into the Marie Brázdová's collaboration.

Top Co-Authors

Avatar

Miroslav Fojta

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Emil Paleček

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Lucie Navrátilová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Matej Adámik

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Petr Pečinka

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Vlastimil Tichý

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar

Michal Hocek

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Rene Kizek

University of Veterinary and Pharmaceutical Sciences Brno

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge