Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie C. Hogan is active.

Publication


Featured researches published by Marie C. Hogan.


Nature Genetics | 2002

The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein

Christopher J. Ward; Marie C. Hogan; Sandro Rossetti; Denise L. Walker; Tam P. Sneddon; Xiaofang Wang; Vicky Kubly; Julie M. Cunningham; Robert Bacallao; Masahiko Ishibashi; Dawn S. Milliner; Vicente E. Torres; Peter C. Harris

Autosomal recessive polycystic kidney disease (ARPKD) is characterized by dilation of collecting ducts and by biliary dysgenesis and is an important cause of renal- and liver-related morbidity and mortality. Genetic analysis of a rat with recessive polycystic kidney disease revealed an orthologous relationship between the rat locus and the ARPKD region in humans; a candidate gene was identified. A mutation was characterized in the rat and screening the 66 coding exons of the human ortholog (PKHD1) in 14 probands with ARPKD revealed 6 truncating and 12 missense mutations; 8 of the affected individuals were compound heterozygotes. The PKHD1 transcript, approximately 16 kb long, is expressed in adult and fetal kidney, liver and pancreas and is predicted to encode a large novel protein, fibrocystin, with multiple copies of a domain shared with plexins and transcription factors. Fibrocystin may be a receptor protein that acts in collecting-duct and biliary differentiation.


Arthritis & Rheumatism | 2001

Response of Wegener's granulomatosis to anti-CD20 chimeric monoclonal antibody therapy

Ulrich Specks; Fernando C. Fervenza; Thomas J. McDonald; Marie C. Hogan

We report on the successful, compassionate use of the anti-CD20 chimeric monoclonal antibody rituximab in a patient with chronic, relapsing cytoplasmic antineutrophil cytoplasmic antibody (cANCA)-associated Wegeners granulomatosis (WG). The patient initially responded to treatment with glucocorticoids and cyclophosphamide. However, bone marrow toxicity during cyclophosphamide treatment of a relapse precluded its further use. Azathioprine and mycophenolate mofetil treatment had failed to maintain remission of the WG, and methotrexate was contraindicated. Because the patients 5-year course was characterized by close correlation of cANCA levels with disease activity, selective elimination of cANCA was deemed a treatment option for his latest relapse. He was given 4 infusions of 375 mg/M2 of rituximab and high-dose glucocorticoids. Complete remission was associated with the disappearance of B lymphocytes and cANCA. Glucocorticoid treatment was then discontinued. After 11 months, the cANCA recurred, and rituximab therapy was repeated, without glucocorticoids. At 8 months after the second course of rituximab (18 months after the first course), the patients WG has remained in complete remission. Elimination of B cells by rituximab therapy may prove to be an effective and safe new treatment modality for ANCA-associated vasculitis and possibly other autoimmune diseases. This modality warrants closer examination in a carefully conducted clinical trial.


Journal of The American Society of Nephrology | 2010

Randomized Clinical Trial of Long-Acting Somatostatin for Autosomal Dominant Polycystic Kidney and Liver Disease

Marie C. Hogan; Tetyana V. Masyuk; Linda Page; Vickie Kubly; Eric J. Bergstralh; Xujian Li; Bohyun Kim; Bernard F. King; James F. Glockner; David R. Holmes; Sandro Rossetti; Peter C. Harris; Nicholas F. LaRusso; Vicente E. Torres

There are no proven, effective therapies for polycystic kidney disease (PKD) or polycystic liver disease (PLD). We enrolled 42 patients with severe PLD resulting from autosomal dominant PKD (ADPKD) or autosomal dominant PLD (ADPLD) in a randomized, double-blind, placebo-controlled trial of octreotide, a long-acting somatostatin analogue. We randomly assigned 42 patients in a 2:1 ratio to octreotide LAR depot (up to 40 mg every 28+/-5 days) or placebo for 1 year. The primary end point was percent change in liver volume from baseline to 1 year, measured by MRI. Secondary end points were changes in total kidney volume, GFR, quality of life, safety, vital signs, and clinical laboratory tests. Thirty-four patients had ADPKD, and eight had ADPLD. Liver volume decreased by 4.95%+/-6.77% in the octreotide group but remained practically unchanged (+0.92%+/-8.33%) in the placebo group (P=0.048). Among patients with ADPKD, total kidney volume remained practically unchanged (+0.25%+/-7.53%) in the octreotide group but increased by 8.61%+/-10.07% in the placebo group (P=0.045). Changes in GFR were similar in both groups. Octreotide was well tolerated; treated individuals reported an improved perception of bodily pain and physical activity. In summary, octreotide slowed the progressive increase in liver volume and total kidney volume, improved health perception among patients with PLD, and had an acceptable side effect profile.


Journal of The American Society of Nephrology | 2009

Characterization of PKD Protein-Positive Exosome-Like Vesicles

Marie C. Hogan; Luca Manganelli; John R. Woollard; Anatoliy I. Masyuk; Tatyana V. Masyuk; Rachaneekorn Tammachote; Bing Q. Huang; Alexey A. Leontovich; Thomas G. Beito; Benjamin J. Madden; M. Cristine Charlesworth; Vicente E. Torres; Nicholas F. LaRusso; Peter C. Harris; Christopher J. Ward

Proteins associated with autosomal dominant and autosomal recessive polycystic kidney disease (polycystin-1, polycystin-2, and fibrocystin) localize to various subcellular compartments, but their functional site is thought to be on primary cilia. PC1+ vesicles surround cilia in Pkhd1(del2/del2) mice, which led us to analyze these structures in detail. We subfractionated urinary exosome-like vesicles (ELVs) and isolated a subpopulation abundant in polycystin-1, fibrocystin (in their cleaved forms), and polycystin-2. This removed Tamm-Horsfall protein, the major contaminant, and subfractionated ELVs into at least three different populations, demarcated by the presence of aquaporin-2, polycystin-1, and podocin. Proteomic analysis of PKD ELVs identified 552 proteins (232 not yet in urinary proteomic databases), many of which have been implicated in signaling, including the molecule Smoothened. We also detected two other protein products of genes involved in cystic disease: Cystin, the product of the mouse cpk locus, and ADP-ribosylation factor-like 6, the product of the human Bardet-Biedl syndrome gene (BBS3). Our proteomic analysis confirmed that cleavage of polycystin-1 and fibrocystin occurs in vivo, in manners consistent with cleavage at the GPS site in polycystin-1 and the proprotein convertase site in fibrocystin. In vitro, these PKD ELVs preferentially interacted with primary cilia of kidney and biliary epithelial cells in a rapid and highly specific manner. These data suggest that PKD proteins are shed in membrane particles in the urine, and these particles interact with primary cilia.


The New England Journal of Medicine | 2014

Blood Pressure in Early Autosomal Dominant Polycystic Kidney Disease

Robert W. Schrier; Kaleab Z. Abebe; Ronald D. Perrone; Vicente E. Torres; William E. Braun; Theodore I. Steinman; Franz T. Winklhofer; Godela Brosnahan; Peter G. Czarnecki; Marie C. Hogan; Dana C. Miskulin; Frederic Rahbari-Oskoui; Jared J. Grantham; Peter C. Harris; Michael F. Flessner; Kyongtae T. Bae; Charity G. Moore; Arlene B. Chapman

BACKGROUND Hypertension is common in autosomal dominant polycystic kidney disease (ADPKD) and is associated with increased total kidney volume, activation of the renin-angiotensin-aldosterone system, and progression of kidney disease. METHODS In this double-blind, placebo-controlled trial, we randomly assigned 558 hypertensive participants with ADPKD (15 to 49 years of age, with an estimated glomerular filtration rate [GFR] >60 ml per minute per 1.73 m(2) of body-surface area) to either a standard blood-pressure target (120/70 to 130/80 mm Hg) or a low blood-pressure target (95/60 to 110/75 mm Hg) and to either an angiotensin-converting-enzyme inhibitor (lisinopril) plus an angiotensin-receptor blocker (telmisartan) or lisinopril plus placebo. The primary outcome was the annual percentage change in the total kidney volume. RESULTS The annual percentage increase in total kidney volume was significantly lower in the low-blood-pressure group than in the standard-blood-pressure group (5.6% vs. 6.6%, P=0.006), without significant differences between the lisinopril-telmisartan group and the lisinopril-placebo group. The rate of change in estimated GFR was similar in the two medication groups, with a negative slope difference in the short term in the low-blood-pressure group as compared with the standard-blood-pressure group (P<0.001) and a marginally positive slope difference in the long term (P=0.05). The left-ventricular-mass index decreased more in the low-blood-pressure group than in the standard-blood-pressure group (-1.17 vs. -0.57 g per square meter per year, P<0.001); urinary albumin excretion was reduced by 3.77% with the low-pressure target and increased by 2.43% with the standard target (P<0.001). Dizziness and light-headedness were more common in the low-blood-pressure group than in the standard-blood-pressure group (80.7% vs. 69.4%, P=0.002). CONCLUSIONS In early ADPKD, the combination of lisinopril and telmisartan did not significantly alter the rate of increase in total kidney volume. As compared with standard blood-pressure control, rigorous blood-pressure control was associated with a slower increase in total kidney volume, no overall change in the estimated GFR, a greater decline in the left-ventricular-mass index, and greater reduction in urinary albumin excretion. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases and others; HALT-PKD [Study A] ClinicalTrials.gov number, NCT00283686.).


Clinical Journal of The American Society of Nephrology | 2010

Rituximab therapy in idiopathic membranous nephropathy: a 2-year study.

Fernando C. Fervenza; Roshini S. Abraham; Stephen B. Erickson; Maria V. Irazabal; Alfonso Eirin; Ulrich Specks; Patrick H. Nachman; Eric J. Bergstralh; Nelson Leung; Fernando G. Cosio; Marie C. Hogan; John J. Dillon; LaTonya J. Hickson; Xujian Li; Daniel C. Cattran

BACKGROUND AND OBJECTIVES It was postulated that in patients with membranous nephropathy (MN), four weekly doses of Rituximab (RTX) would result in more effective B cell depletion, a higher remission rate, and maintaining the same safety profile compared with patients treated with RTX dosed at 1 g every 2 weeks. This hypothesis was supported by previous pharmacokinetic (PK) analysis showing that RTX levels in the two-dose regimen were 50% lower compared with nonproteinuric patients, which could potentially result in undertreatment. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Twenty patients with MN and proteinuria >5 g/24 h received RTX (375 mg/m(2) × 4), with re-treatment at 6 months regardless of proteinuria response. PK analysis was conducted simultaneously with immunological analyses of T and B cells to ascertain the effect of RTX on lymphocyte subpopulations. RESULTS Baseline proteinuria of 11.9 g/24 h decreased to 4.2 and 2.0 g/24 h at 12 and 24 months, respectively, whereas creatinine clearance increased from 72.4 ml/min per 1.73 m(2) at baseline to 88.4 ml/min per 1.73 m(2) at 24 months. Of 18 patients who completed 24-month follow-up, 4 are in complete remission, 12 are in partial remission, 1 has a limited response, and 1 patient relapsed. Serum RTX levels were similar to those obtained with two doses of RTX. CONCLUSIONS Four doses of RTX resulted in more effective B cell depletion, but proteinuria reduction was similar to RTX at 1 g every 2 weeks. Baseline quantification of lymphocyte subpopulations did not predict response to RTX therapy.


Journal of The American Society of Nephrology | 2015

Imaging Classification of Autosomal Dominant Polycystic Kidney Disease: A Simple Model for Selecting Patients for Clinical Trials

Maria V. Irazabal; Laureano J. Rangel; Eric J. Bergstralh; Sara L. Osborn; Amber J. Harmon; Jamie L. Sundsbak; Kyongtae T. Bae; Arlene B. Chapman; Jared J. Grantham; Michal Mrug; Marie C. Hogan; Ziad M. El-Zoghby; Peter C. Harris; Bradley J. Erickson; Bernard F. King; Vicente E. Torres

The rate of renal disease progression varies widely among patients with autosomal dominant polycystic kidney disease (ADPKD), necessitating optimal patient selection for enrollment into clinical trials. Patients from the Mayo Clinic Translational PKD Center with ADPKD (n=590) with computed tomography/magnetic resonance images and three or more eGFR measurements over ≥6 months were classified radiologically as typical (n=538) or atypical (n=52). Total kidney volume (TKV) was measured using stereology (TKVs) and ellipsoid equation (TKVe). Typical patients were randomly partitioned into development and internal validation sets and subclassified according to height-adjusted TKV (HtTKV) ranges for age (1A-1E, in increasing order). Consortium for Radiologic Imaging Study of PKD (CRISP) participants (n=173) were used for external validation. TKVe correlated strongly with TKVs, without systematic underestimation or overestimation. A longitudinal mixed regression model to predict eGFR decline showed that log2HtTKV and age significantly interacted with time in typical patients, but not in atypical patients. When 1A-1E classifications were used instead of log2HtTKV, eGFR slopes were significantly different among subclasses and, except for 1A, different from those in healthy kidney donors. The equation derived from the development set predicted eGFR in both validation sets. The frequency of ESRD at 10 years increased from subclass 1A (2.4%) to 1E (66.9%) in the Mayo cohort and from 1C (2.2%) to 1E (22.3%) in the younger CRISP cohort. Class and subclass designations were stable. An easily applied classification of ADPKD based on HtTKV and age should optimize patient selection for enrollment into clinical trials and for treatment when one becomes available.


Clinical Journal of The American Society of Nephrology | 2009

Renal Involvement in Primary Sjögren's Syndrome: A Clinicopathologic Study

Saugar Maripuri; Joseph P. Grande; Thomas G. Osborn; Fernando C. Fervenza; Eric L. Matteson; James V. Donadio; Marie C. Hogan

BACKGROUND & OBJECTIVES Renal pathology and clinical outcomes in patients with primary Sjögrens syndrome (pSS) who underwent kidney biopsy (KB) because of renal impairment are reported. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Twenty-four of 7276 patients with pSS underwent KB over 40 years. Patient cases were reviewed by a renal pathologist, nephrologist, and rheumatologist. Presentation, laboratory findings, renal pathology, initial treatment, and therapeutic response were noted. RESULTS Seventeen patients (17 of 24; 71%) had acute or chronic tubulointerstitial nephritis (TIN) as the primary lesion, with chronic TIN (11 of 17; 65%) the most common presentation. Two had cryoglobulinemic GN. Two had focal segmental glomerulosclerosis. Twenty patients (83%) were initially treated with corticosteroids. In addition, three received rituximab during follow-up. Sixteen were followed after biopsy for more than 12 mo (median 76 mo; range 17 to 192), and 14 of 16 maintained or improved renal function through follow-up. Of the seven patients presenting in stage IV chronic kidney disease, none progressed to stage V with treatment. CONCLUSIONS This case series supports chronic TIN as the predominant KB finding in patients with renal involvement from pSS and illustrates diverse glomerular lesions. KB should be considered in the clinical evaluation of kidney dysfunction in pSS. Treatment with glucocorticoids or other immunosuppressive agents appears to slow progression of renal disease. Screening for renal involvement in pSS should include urinalysis, serum creatinine, and KB where indicated. KB with characteristic findings (TIN) should be considered as an additional supportive criterion to the classification criteria for pSS because it may affect management and renal outcome.


Kidney International | 2013

Design of the nephrotic syndrome study network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach

Crystal A. Gadegbeku; Debbie S. Gipson; Lawrence B. Holzman; Akinlolu Ojo; Peter X.-K. Song; Laura Barisoni; Matthew G. Sampson; Jeffrey B. Kopp; Kevin V. Lemley; Peter J. Nelson; Chrysta C. Lienczewski; Sharon G. Adler; Gerald B. Appel; Daniel C. Cattran; Michael J. Choi; Gabriel Contreras; Katherine M. Dell; Fernando C. Fervenza; Keisha L. Gibson; Larry A. Greenbaum; Joel D. Hernandez; Stephen M. Hewitt; Sangeeta Hingorani; Michelle A. Hladunewich; Marie C. Hogan; Susan L. Hogan; Frederick J. Kaskel; John C. Lieske; Kevin E.C. Meyers; Patrick H. Nachman

The Nephrotic Syndrome Study Network (NEPTUNE) is a North American multi-center collaborative consortium established to develop a translational research infrastructure for Nephrotic Syndrome. This includes a longitudinal observational cohort study, a pilot and ancillary studies program, a training program, and a patient contact registry. NEPTUNE will enroll 450 adults and children with minimal change disease, focal segmental glomerulosclerosis and membranous nephropathy for detailed clinical, histopathologic, and molecular phenotyping at the time of clinically-indicated renal biopsy. Initial visits will include an extensive clinical history, physical examination, collection of urine, blood and renal tissue samples, and assessments of quality of life and patient-reported outcomes. Follow-up history, physical measures, urine and blood samples, and questionnaires will be obtained every 4 months in the first year and bi-annually, thereafter. Molecular profiles and gene expression data will be linked to phenotypic, genetic, and digitalized histologic data for comprehensive analyses using systems biology approaches. Analytical strategies were designed to transform descriptive information to mechanistic disease classification for Nephrotic Syndrome and to identify clinical, histological, and genomic disease predictors. Thus, understanding the complexity of the disease pathogenesis will guide further investigation for targeted therapeutic strategies.


Clinical Journal of The American Society of Nephrology | 2010

The HALT Polycystic Kidney Disease Trials: Design and Implementation

Arlene B. Chapman; Vicente E. Torres; Ronald D. Perrone; Theodore I. Steinman; Kyongtae T. Bae; J. Philip Miller; Dana C. Miskulin; Frederic Rahbari Oskoui; Amirali Masoumi; Marie C. Hogan; Franz T. Winklhofer; William E. Braun; Paul A. Thompson; Catherine M. Meyers; Cass Kelleher; Robert W. Schrier

BACKGROUND AND OBJECTIVES Two HALT PKD trials will investigate interventions that potentially slow kidney disease progression in hypertensive autosomal dominant polycystic kidney disease (ADPKD) patients. Studies were designed in early and later stages of ADPKD to assess the impact of intensive blockade of the renin-angiotensin-aldosterone system and level of BP control on progressive renal disease. Design, settings, participants, and measurements: PKD-HALT trials are multicenter, randomized, double-blind, placebo-controlled trials studying 1018 hypertensive ADPKD patients enrolled over 3 yr with 4 to 8 yr of follow-up. In study A, 548 participants, estimated GFR (eGFR) of >60 ml/min per 1.73 m(2) were randomized to one of four arms in a 2-by-2 design: combination angiotensin converting enzyme inhibitor (ACEi) and angiotensin receptor blocker (ARB) therapy versus ACEi monotherapy at two levels of BP control. In study B, 470 participants, eGFR of 25 to 60 ml/min per 1.73 m2 compared ACEi/ARB therapy versus ACEi monotherapy, with BP control of 120 to 130/70 to 80 mmHg. Primary outcomes of studies A and B are MR-based percent change kidney volume and a composite endpoint of time to 50% reduction of baseline estimated eGFR, ESRD, or death, respectively. RESULTS This report describes design issues related to (1) novel endpoints such as kidney volume, (2) home versus office BP measures, and (3) the impact of RAAS inhibition on kidney and patient outcomes, safety, and quality of life. CONCLUSIONS HALT PKD will evaluate potential benefits of rigorous BP control and inhibition of the renin-angiotensin-aldosterone system on kidney disease progression in ADPKD.

Collaboration


Dive into the Marie C. Hogan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter C. Harris

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Ward

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Theodore I. Steinman

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert W. Schrier

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge