Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Catherine Vozenin is active.

Publication


Featured researches published by Marie-Catherine Vozenin.


International Journal of Radiation Oncology Biology Physics | 1999

Striking regression of subcutaneous fibrosis induced by high doses of gamma rays using a combination of pentoxifylline and α-tocopherol: an experimental study

Jean-Louis Lefaix; Sylvie Delanian; Marie-Catherine Vozenin; Jean-Jacques Leplat; Yves Tricaud; Michèle T. Martin

PURPOSE To establish a successful treatment of subcutaneous fibrosis developing after high doses of gamma rays, suitable for use in clinical practice. METHODS AND MATERIALS We used an animal model of acute localized gamma irradiation simulating accidental overexposure in humans. Three groups of 5 Large White pigs were irradiated using a collimated 192Ir source to deliver a single dose of 160 Gy onto the skin surface (100%) of the outer side of the thigh. A well-defined block of necrosis developed within a few weeks which had healed after 26 weeks to leave a block of subcutaneous fibrosis involving skin and skeletal muscle. One experimental group of 5 pigs was dosed orally for 26 weeks starting 26 weeks after irradiation with 1600 mg/120 kg body weight of pentoxifylline (PTX) included in the reconstituted food during its fabrication, and another group of 5 was dosed orally for the same period with a daily dose of 1600 mg/120 kg body weight of PTX combined with 2000 IU/120 kg body weight of alpha-tocopherol. Five irradiated control pigs were given normal food only. Animals were assessed for changes in the density of the palpated fibrotic block and in the dimensions of the projected cutaneous surface. Depth of scar tissue was determined by ultrasound. Physical and sonographic findings were confirmed by autopsy 26 weeks after treatment started. The density, length, width, and depth of the block of fibrotic scar tissue, and the areas and volume of its projected cutaneous surface, were compared before treatment, 6 and 13 weeks thereafter, and at 26 weeks. RESULTS The experimental animals exhibited no change in behavior and no abnormal clinical or anatomic signs. No modifications were observed in the block of fibrotic scar tissue of pigs dosed with PTX alone. However, significant softening and shrinking of this block were noted in the pigs dosed with PTX + alpha-tocopherol 13 weeks after treatment started and at autopsy, when mean regression was approximately 30% for length, approximately 50% for width and depth, and approximately 70% for area and volume. Histologic examination showed completely normal muscle and subcutaneous tissue surrounding the residual scar tissue. The 50% decrease in the linear dimensions of the scar tissue, were comparable to the results obtained in our previous clinical studies, and were highly significant compared to the clinical and autopsy results for the controls. Histologic examination of the residual scar tissue revealed tissue which was more homogenous and less cellular and inflammatory than in control and PTX-dosed pigs. The tissular and cellular immunolocalization of tumor necrosis factor alpha (TNFalpha) was similar in the residual fibrotic tissues of all three groups of pigs, whereas the immunostaining of transforming growth factor beta-1(TGFbeta-1) diminished much more in the residual fibrotic scar tissue of the PTX + alpha-tocopherol-dosed pigs than in the two other groups. CONCLUSIONS The present results showed a striking regression of the subcutaneous fibrotic scar tissue that develops as a consequence of high doses of gamma rays.


Science Translational Medicine | 2014

Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice

Vincent Favaudon; Laura Caplier; Virginie Monceau; Frédéric Pouzoulet; Mano Sayarath; Charles Fouillade; Marie-France Poupon; Isabel Brito; Philippe Hupé; Jean Bourhis; Jean-Jacques Fontaine; Marie-Catherine Vozenin

Pulsed, ultrahigh dose-rate irradiation is safer than standard radiotherapy for the treatment of lung cancer and selectively spares normal tissue. Safer Radiation for the Lung Radiation is used to treat a variety of tumor types, including lung cancer. Unfortunately, radiation-induced damage to the surrounding healthy lung is a major problem, which can cause long-term complications and limits the amount of radiation that can be safely delivered to the tumor. Favaudon et al. now present a technology called FLASH, which allows the delivery of pulsed, ultrahigh dose-rate irradiation, which causes less damage to the healthy lung than conventional radiotherapy in mouse models. The authors confirmed that FLASH is effective against tumor cells but causes little damage to normal tissue. These results suggest that FLASH radiation may be a viable option for treating lung tumors, although this will need to be confirmed in human patients. In vitro studies suggested that sub-millisecond pulses of radiation elicit less genomic instability than continuous, protracted irradiation at the same total dose. To determine the potential of ultrahigh dose-rate irradiation in radiotherapy, we investigated lung fibrogenesis in C57BL/6J mice exposed either to short pulses (≤500 ms) of radiation delivered at ultrahigh dose rate (≥40 Gy/s, FLASH) or to conventional dose-rate irradiation (≤0.03 Gy/s, CONV) in single doses. The growth of human HBCx-12A and HEp-2 tumor xenografts in nude mice and syngeneic TC-1 Luc+ orthotopic lung tumors in C57BL/6J mice was monitored under similar radiation conditions. CONV (15 Gy) triggered lung fibrosis associated with activation of the TGF-β (transforming growth factor–β) cascade, whereas no complications developed after doses of FLASH below 20 Gy for more than 36 weeks after irradiation. FLASH irradiation also spared normal smooth muscle and epithelial cells from acute radiation-induced apoptosis, which could be reinduced by administration of systemic TNF-α (tumor necrosis factor–α) before irradiation. In contrast, FLASH was as efficient as CONV in the repression of tumor growth. Together, these results suggest that FLASH radiotherapy might allow complete eradication of lung tumors and reduce the occurrence and severity of early and late complications affecting normal tissue.


Current Drug Targets | 2010

Modulation of the Rho/ROCK Pathway in Heart and Lung after Thorax Irradiation Reveals Targets to Improve Normal Tissue Toxicity

Virginie Monceau; Nadia Pasinetti; Charlotte Schupp; Fred Pouzoulet; Paule Opolon; Marie-Catherine Vozenin

The medical options available to prevent or treat radiation-induced injury are scarce and developing effective countermeasures is still an open research field. In addition, more than half of cancer patients are treated with radiation therapy, which displays a high antitumor efficacy but can cause, albeit rarely, disabling long-term toxicities including radiation fibrosis. Progress has been made in the definition of molecular pathways associated with normal tissue toxicity that suggest potentially effective therapeutic targets. Targeting the Rho/ROCK pathway seems a promising anti-fibrotic approach, at least in the gut; the current study was performed to assess whether this target was relevant to the prevention and/or treatment of injury to the main thoracic organs, namely heart and lungs. First, we showed activation of two important fibrogenic pathways (Smad and Rho/ROCK) in response to radiation-exposure to adult cardiomyocytes; we extended these observations in vivo to the heart and lungs of mice, 15 and 30 weeks post-irradiation. We correlated this fibrogenic molecular imprint with alteration of heart physiology and long-term remodelling of pulmonary and cardiac histological structures. Lastly, cardiac and pulmonary radiation injury and bleomycin-induced pulmonary fibrosis were successfully modulated using Rho/ROCK inhibitors (statins and Y-27632) and this was associated with a normalization of fibrogenic markers. In conclusion, the present paper shows for the first time, activation of Rho/ROCK and Smad pathways in pulmonary and cardiac radiation-induced delayed injury. Our findings thereby reveal a safe and efficient therapeutic opportunity for the abrogation of late thoracic radiation injury, potentially usable either before or after radiation exposure; this approach is especially attractive in (1) the radiation oncology setting, as it does not interfere with prior anti-cancer treatment and in (2) radioprotection, as applicable to the treatment of established radiation injury, for example in the case of radiation accidents or acts of terrorism.


Molecular Cancer Therapeutics | 2015

Synergy of Radiotherapy and a Cancer Vaccine for the Treatment of HPV-Associated Head and Neck Cancer

Michele Mondini; Mevyn Nizard; Thi Tran; Laetitia Mauge; M. Loi; Céline Clémenson; Delphine Dugue; Pierre Maroun; Emilie Louvet; Julien Adam; Cécile Badoual; Dominique Helley; Estelle Dransart; Ludger Johannes; Marie-Catherine Vozenin; Jean-Luc Perfettini; Eric Tartour; Eric Deutsch

There is growing interest in the association of radiotherapy and immunotherapy for the treatment of solid tumors. Here, we report an extremely effective combination of local irradiation (IR) and Shiga Toxin B (STxB)–based human papillomavirus (HPV) vaccination for the treatment of HPV-associated head and neck squamous cell carcinoma (HNSCC). The efficacy of the irradiation and vaccine association was tested using a model of HNSCC obtained by grafting TC-1/luciferase cells at a submucosal site of the inner lip of immunocompetent mice. Irradiation and the STxB-E7 vaccine acted synergistically with both single and fractionated irradiation schemes, resulting in complete tumor clearance in the majority of the treated mice. A dose threshold of 7.5 Gy was required to elicit the dramatic antitumor response. The combined treatment induced high levels of tumor-infiltrating, antigen-specific CD8+ T cells, which were required to trigger the antitumor activity. Treatment with STxB-E7 and irradiation induced CD8+ T-cell memory, which was sufficient to exert complete antitumor responses in both local recurrences and distant metastases. We also report for the first time that a combination therapy based on local irradiation and vaccination induces an increased pericyte coverage (as shown by αSMA and NG2 staining) and ICAM-1 expression on vessels. This was associated with enhanced intratumor vascular permeability that correlated with the antitumor response, suggesting that the combination therapy could also act through an increased accessibility for immune cells. The combination strategy proposed here offers a promising approach that could potentially be transferred into early-phase clinical trials. Mol Cancer Ther; 14(6); 1336–45. ©2015 AACR.


Cancer and Metastasis Reviews | 2012

Pharmacological strategies to spare normal tissues from radiation damage: useless or overlooked therapeutics?

Céline Bourgier; Antonin Levy; Marie-Catherine Vozenin; Eric Deutsch

Half of all the patients with a solid malignant tumor will receive radiation therapy (RT) with a curative or palliative intent during the course of their treatment. Deleterious effects may result in acute and chronic toxicities that reduce the long-term health-related quality of life of these patients. High-tech RT enables precise beam delivery that conforms closely to the shape of tumors yielding an improved efficacy/toxicity ratio. However, sophisticated RT will not completely prevent toxicity in the irradiated field, especially as normal tissue constraints are offset by dose escalation or concurrent chemotherapy. Pharmacological agents can be used before or after RT to reduce side effects and are classified based on the timing of RT delivery. “Radioprotectors,” used as a molecular prophylactic strategy before RT, are mostly based on antioxidant properties. Currently, amifostine is the only radioprotector approved for use in the clinic. “Mitigators,” given during or shortly after RT, reduce the action of cellular ionizing radiation on normal tissues before the emergence of symptoms. Lastly, a “treatment” is the administration of an agent once symptoms have developed in order to reverse those that are mostly due to fibrosis. This review presents the major known physiopathological mechanisms involved in radiation response and tissue damage for which potential pharmacological candidates are emerging. We discuss the potential clinical relevance of such therapeutics in the era of high-precision radiotherapy.


British Journal of Cancer | 2012

Normal tissues toxicities triggered by combined anti-angiogenic and radiation therapies: hurdles might be ahead.

Monica Mangoni; Marie-Catherine Vozenin; Giampaolo Biti; Eric Deutsch

Background:Combined-modality therapy is a promising approach to improve the therapeutic index of radiotherapy. However, these improvements could come at the cost of increased toxicities. Clinical trials evaluating anti-tumour efficacy of bevacizumab combined with radiotherapy have encountered unexpected side effects. This study is the first systematic evaluation of normal tissue toxicity triggered by anti-angiogenic agents combined with radiation therapy in mice.Methods:Effect of a mouse anti-VEGF antibody was monitored on acute toxicity studying radiation-induced intestinal ulceration (12 Gy TBI); on subacute toxicity using a model of oral mucositis (16.5 Gy); on late radiation injuries by monitoring lung fibrosis (bleomycin and 19 Gy).Results:Combination of irradiation with anti-VEGF antibody enhanced intestinal damages with severe epithelial ulcerations, had no adverse impact on oral mucositis and dramatically worsened the fibrotic picture induced by bleomycin and irradiation to the lung.Interpretation:These reports bring to light the important questions about safety and underscore the need for appropriate preclinical modelling of the impact on normal tissues of novel drug–radiation regimens. Our findings also highlight the complexity of anti-VEGF action, which could in defined conditions exert tissue-specific protection. The findings indicate that the combination of targeted drugs with radiotherapy should be approached with caution.


PLOS ONE | 2013

Enhanced Sensitivity to Low Dose Irradiation of ApoE−/− Mice Mediated by Early Pro-Inflammatory Profile and Delayed Activation of the TGFβ1 Cascade Involved in Fibrogenesis

Virginie Monceau; Lydia Meziani; Carine Strup-Perrot; Eric Morel; Magret Schmidt; Julia Haagen; Brigitte Escoubet; Wolfgang Dörr; Marie-Catherine Vozenin

Aim Investigating long-term cardiac effects of low doses of ionizing radiation is highly relevant in the context of interventional cardiology and radiotherapy. Epidemiological data report that low doses of irradiation to the heart can result in significant increase in the cardiovascular mortality by yet unknown mechanisms. In addition co-morbidity factor such as hypertension or/and atherosclerosis can enhance cardiac complications. Therefore, we explored the mechanisms that lead to long-term cardiac remodelling and investigated the interaction of radiation-induced damage to heart and cardiovascular systems with atherosclerosis, using wild-type and ApoE-deficient mice. Methods and Results ApoE−/− and wild-type mice were locally irradiated to the heart at 0, 0.2 and 2 Gy (RX). Twenty, 40 and 60 weeks post-irradiation, echocardiography were performed and hearts were collected for cardiomyocyte isolation, histopathological analysis, study of inflammatory infiltration and fibrosis deposition. Common and strain-specific pathogenic pathways were found. Significant alteration of left ventricular function (eccentric hypertrophy) occurred in both strains of mice. Low dose irradiation (0.2 Gy) induced premature death in ApoE−/− mice (47% died at 20 weeks). Acute inflammatory infiltrate was observed in scarring areas with accumulation of M1-macrophages and secretion of IL-6. Increased expression of the fibrogenic factors (TGF-β1 and PAI-1) was measured earlier in cardiomyocytes isolated from ApoE−/− than in wt animals. Conclusion The present study shows that cardiac exposure to low dose of ionizing radiation induce significant physiological, histopathological, cellular and molecular alterations in irradiated heart with mild functional impairment. Atherosclerotic predisposition precipitated cardiac damage induced by low doses with an early pro-inflammatory polarization of macrophages.


PLOS ONE | 2011

Bioluminescent orthotopic mouse models of human localized non-small cell lung cancer: feasibility and identification of circulating tumour cells.

Pierre Mordant; Yohann Loriot; Benoit Lahon; Yves Castier; Guy Lesèche; Jean-Charles Soria; Marie-Catherine Vozenin; Charles Decraene; Eric Deutsch

Background Preclinical models of non-small cell lung cancer (NSCLC) require better clinical relevance to study disease mechanisms and innovative therapeutics. We sought to compare and refine bioluminescent orthotopic mouse models of human localized NSCLC. Methods Athymic nude mice underwent subcutaneous injection (group 1-SC, n = 15, control), percutaneous orthotopic injection (group 2-POI, n = 30), surgical orthotopic implantation of subcutaneously grown tumours (group 3-SOI, n = 25), or transpleural orthotopic injection (group 4-TOI, n = 30) of A549-luciferase cells. Bioluminescent in vivo imaging was then performed weekly. Circulating tumour cells (CTCs) were searched using Cellsearch® system in SC and TOI models. Results Group 2-POI was associated with unexpected direct pleural spreading of the cellular solution in 53% of the cases, forbidding further evaluation of any localized lung tumour. Group 3-SOI was characterized by high perioperative mortality, initially localized lung tumours, and local evolution. Group 4-TOI was associated with low perioperative mortality, initially localized lung tumours, loco regional extension, and distant metastasis. CTCs were detected in 83% of nude mice bearing subcutaneous or orthotopic NSCLC tumours. Conclusions Transpleural orthotopic injection of A549-luc cells in nude mouse lung induces localized tumour, followed by lymphatic extension and specific mortality, and allowed the first time identification of CTCs in a NSCLC mice model.


Journal of Oncology | 2011

Lung Cancer Stem Cell: New Insights on Experimental Models and Preclinical Data

Caroline Rivera; Sofia Rivera; Yohann Loriot; Marie-Catherine Vozenin; Eric Deutsch

Lung cancer remains the leading cause of cancer death. Understanding lung tumors physiopathology should provide opportunity to prevent tumor development or/and improve their therapeutic management. Cancer stem cell (CSC) theory refers to a subpopulation of cancer cells, also named tumor-initiating cells, that can drive cancer development. Cells presenting these characteristics have been identified and isolated from lung cancer. Exploring cell markers and signaling pathways specific to lung CSCs may lead to progress in therapy and improve the prognosis of patients with lung cancer. Continuous efforts in developing in vitro and in vivo models may yield reliable tools to better understand CSC abilities and to test new therapeutic targets. Preclinical data on putative CSC targets are emerging by now. These preliminary studies are critical for the next generation of lung cancer therapies.


Molecular Medicine | 2000

Fc-receptor-mediated intracellular delivery of Cu/Zn-superoxide dismutase (SOD1) protects against redox-induced apoptosis through a nitric oxide dependent mechanism.

Ioanis Vouldoukis; Virginie Sivan; Marie-Catherine Vozenin; Caroline Kamaté; Alphonse Calenda; Dominique Mazier; Bernard Dugas

BackgroundUsing specific antibodies against bovine Cu/Zn-superoxide dismutase (EC 1.15.1.1, SOD1) we demonstrated that anti-SOD antibodies (IgG1) are able to promote the intracellular translocation of the antioxidant enzyme. The transduction signalling mediated by IgG1 immune complexes are known to promote a concomitant production of superoxide and nitric oxide leading to the production of peroxynitrites and cell death by apoptosis. The Fc-mediated intracellular delivery of SOD1 thus limited the endogenous production of superoxide. It was thus of interest to confirm that in the absence of superoxide anion, the production of nitric oxide protected cells against apoptosis. Study in greater detail clearly stated that under superoxide anion-free conditions, nitric oxide promoted the cell antioxidant armature and thus protected cells against redox-induced apoptosis.Materials and MethodsThe murine macrophage cell-lines J774 A1 were preactivated or not with interferon-γ and were then stimulated by IgG1 immune complexes (IC), free SOD1 or SOD1 IC and superoxide anion, nitric oxide, peroxynitrite, and tumor necrosis factor-α (TNF-α) production was evaluated. The redox consequences of these activation processes were also evaluated on mitochondrial respiration and apoptosis as well as on the controlled expression of the cellular antioxidant armature.ResultsWe demonstrated that SOD1 IC induced a Fcγ receptor (FcγR)-dependent intracellular delivery of the antioxidant enzyme in IFN-γ activated murine macrophages (the J774 A1 cell line). The concomitant stimulation of the FcγR and the translocation of the SOD1 in the cytoplasm of IFN-γ-activated macrophages not only reduced the production of superoxide anion but also induced the expression of the inducible form of nitric oxide synthase (iNOS) and the related NO production. This inducing effect in the absence of superoxide anion production reduced mitochondrial damages and cell death by apoptosis and promoted the intracellular antioxidant armature.ConclusionsTo define the pharmacologic mechanism of action of bovine SOD1, we attempted to identify the second messengers that are induced by SOD1 IC. In this work, we propose that Fc-mediated intracellular delivery of the SOD1 that reduced the production of superoxide anion and of peroxynitrite, promoted a NO-induced protective effect in inducing the antioxidant armature of the cells. Taken together, these data suggested that specific immune responses against antigenic SOD1 could promote the pharmacological properties of the antioxidant enzyme likely via a NO-dependent mechanism.

Collaboration


Dive into the Marie-Catherine Vozenin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge