Marie-Claire Michoud
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Claire Michoud.
Obstetrics & Gynecology | 1995
Michael S. Kramer; Allan L. Coates; Marie-Claire Michoud; Suzanne Dagenais; Emily F. Hamilton; Apostolos Papageorgiou
Objective To assess the etiologic role of maternal short stature, low pre-pregnancy body mass index (BMI), and low rate of gestational weight gain in idiopathic preterm labor. Methods We carried out a three-center case-control study of 555 women with idiopathic onset of preterm labor (before 37 completed weeks), including two overlapping (ie, non-mutually exclusive) subsamples: cases with early preterm labor (before 34 completed weeks) and cases with recurrent preterm labor (before 37 completed weeks plus a history of prior preterm delivery or second-trimester miscarriage). Controls were matched to cases by race and smoking history. All subjects responded in person to questions about height, pre-pregnancy weight, gestational weight gain, and obstetric and sociodemographic histories. Results Maternal height, pre-pregnancy weight, and gestational weight gain demonstrated excellent test-retest reliability, with intra-class correlation coefficients of 0.97, 0.99, and 0.91, respectively. Based on matched analyses, women with a height of 157.5 cm or less had an increased risk of idiopathic preterm labor (odds ratio [OR] 1.85, 95% confidence interval [CI] 1.25–2.74), as did those with a prepregnancy BMI less than 19.8 kg/m2 (OR 1.63, 95% CI 1.09–2.44) or a gestational weight gain rate less than 0.27 kg/week (OR 1.74, 95% CI 1.16–2.62). Conditional logistic regression models containing all three anthropometric variables and controlling for parity, marital status, language, age, and education yielded virtually identical point estimates and CIs. Conclusion Maternal short stature, low pre-pregnancy BMI, and low rate of gestational weight gain may lead to shortened gestation by increasing the risk of idiopathic preterm labor.
American Journal of Respiratory Cell and Molecular Biology | 2009
Marie-Claire Michoud; Renaud Robert; Muhannad Hassan; Barry Moynihan; Christina K. Haston; Vasanthi Govindaraju; Pasquale Ferraro; John W. Hanrahan; James G. Martin
Patients with cystic fibrosis (CF) suffer from asthma-like symptoms and gastrointestinal cramps, attributed to a mutation in the CF transmembrane conductance regulator (CFTR) gene present in a variety of cells. Pulmonary manifestations of the disease include the production of thickened mucus and symptoms of asthma, such as cough and wheezing. A possible alteration in airway smooth muscle (ASM) cell function of patients with CF has not been investigated. The aim of this study was to determine whether the (CFTR) channel is present and affects function of human ASM cells. Cell cultures were obtained from the main or lobar bronchi of patients with and without CF, and the presence of the CFTR channel detected by immunofluorescence. Cytosolic Ca(2+) was measured using Fura-2 and dual-wavelength microfluorimetry. The results show that CFTR is expressed in airway bronchial tissue and in cultured ASM cells. Peak Ca(2+) release in response to histamine was significantly decreased in CF cells compared with non-CF ASM cells (357 +/- 53 nM versus 558 +/- 20 nM; P < 0.001). The CFTR pharmacological blockers, glibenclamide and N-phenyl anthranilic acid, significantly reduced histamine-induced Ca(2+) release in non-CF cells, and similar results were obtained when CFTR expression was varied using antisense oligonucleotides. In conclusion, these data show that the CFTR channel is present in ASM cells, and that it modulates the release of Ca(2+) in response to contractile agents. In patients with CF, a dysfunctional CFTR channel could contribute to the asthma diathesis and gastrointestinal problems experienced by these patients.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2008
Barry Moynihan; Barbara Tolloczko; Marie-Claire Michoud; Meiyo Tamaoka; Pasquale Ferraro; James G. Martin
Interleukin-13 (IL-13) has been strongly implicated in the pathogenesis of allergic asthma through animal models that have shown that IL-13 is both necessary and sufficient to cause airway hyperresponsiveness (AHR). Airway smooth muscle (ASM) is a primary effector of AHR, and IL-13 increases the responsiveness of ASM, by increasing Ca(2+) release intracellularly, to bronchoconstrictors such as histamine. The mechanisms and signaling pathways mediating this effect are incompletely understood. We have investigated the pathways through which IL-13 regulates the Ca(2+) response to histamine in primary human ASM cell cultures. Functional IL-13 receptors were demonstrated by IL-13-mediated phosphorylation of signal transducer and activator of transcription 6 (STAT6) and mitogen-activated protein kinases (MAPKs). IL-13 increased Ca(2+) responses to histamine. The augmentation of Ca(2+) signaling was not affected by inhibition of STAT6 or p38 MAPK signaling but was prevented by concurrent inhibition of c-jun N-terminal kinase (JNK) and extracellular signal-related kinase (ERK) MAPKs. This inhibition did not affect the IL-13-induced increase in histamine receptors. We conclude that IL-13 induces potentiation of Ca(2+) responses to contractile agonists by affecting mechanisms downstream of receptors. JNK and ERK MAPKs modulate these mechanisms.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2008
Michelle L. D'Antoni; Chiara Torregiani; Pasquale Ferraro; Marie-Claire Michoud; Bruce Mazer; James G. Martin; Mara S. Ludwig
Proteoglycans (PG) are altered in the asthmatic airway wall. Because PGs are known to affect cell proliferation and apoptosis, we hypothesized that alterations in PG might influence the airway smooth muscle (ASM) hyperplasia observed in the asthmatic airway. Human ASM cells were seeded on plastic or plates coated with decorin (Dcn), biglycan (Bgn), or collagen type I (Col I) (1, 3, and 10 microg/ml). Cells were stimulated with platelet-derived growth factor (PDGF), and cell number was assessed at 0, 48, and 96 h. Cell proliferation was measured by bromodeoxyuridine (BrdU) incorporation and apoptosis by annexin V and propidium iodide staining at 48 h post-PDGF stimulation. A significant decrease in cell number was observed with cells seeded on Dcn (10 microg/ml) at 0, 48, and 96 h (P < 0.01). Dcn induced both decreases in BrdU incorporation and increases in annexin V staining (P < 0.05). Bgn decreased cell number at time 0 only (P < 0.05) and affected neither proliferation nor apoptosis. Col I (10 mug/ml) caused a significant increase in cell number at 48 and 96 h (P < 0.01). Adding exogenous Dcn (1-30 microg/ml) to the medium had no effect on cell number. Exposing Dcn-coated matrices to chondroitinase ABC, an enzyme that degrades glycosaminoglycan side chains, reversed the Dcn-induced decrease in cell number. These studies demonstrate that different PGs have variable effects on ASM cell proliferation and apoptosis. Recently described decreases in Dcn in the asthmatic airway wall could potentially permit more exuberant ASM growth.
Respiratory Research | 2008
Vasanthi Govindaraju; Marie-Claire Michoud; Pasquale Ferraro; Janine Arkinson; Katherine Safka; Hector Valderrama-Carvajal; James G. Martin
BackgroundMany cystic fibrosis (CF) patients display airway hyperresponsiveness and have symptoms of asthma such as cough, wheezing and reversible airway obstruction. Chronic airway bacterial colonization, associated with neutrophilic inflammation and high levels of interleukin-8 (IL-8) is also a common occurrence in these patients. The aim of this work was to determine the responsiveness of airway smooth muscle to IL-8 in CF patients compared to non-CF individuals.MethodsExperiments were conducted on cultured ASM cells harvested from subjects with and without CF (control subjects). Cells from the 2nd to 5th passage were studied. Expression of the IL-8 receptors CXCR1 and CXCR2 was assessed by flow cytometry. The cell response to IL-8 was determined by measuring intracellular calcium concentration ([Ca2+]i), cell contraction, migration and proliferation.ResultsThe IL-8 receptors CXCR1 and CXCR2 were expressed in both non-CF and CF ASM cells to a comparable extent. IL-8 (100 nM) induced a peak Ca2+ release that was higher in control than in CF cells: 228 ± 7 versus 198 ± 10 nM (p < 0.05). IL-8 induced contraction was greater in CF cells compared to control. Furthermore, IL-8 exposure resulted in greater phosphorylation of myosin light chain (MLC20) in CF than in control cells. In addition, MLC20 expression was also increased in CF cells. Exposure to IL-8 induced migration and proliferation of both groups of ASM cells but was not different between CF and non-CF cells.ConclusionASM cells of CF patients are more contractile to IL-8 than non-CF ASM cells. This enhanced contractility may be due to an increase in the amount of contractile protein MLC20. Higher expression of MLC20 by CF cells could contribute to airway hyperresponsiveness to IL-8 in CF patients.
Respiratory Research | 2008
Barry Moynihan; Barbara Tolloczko; Souad El Bassam; Pascale Ferraro; Marie-Claire Michoud; James G. Martin; Sophie Laberge
BackgroundIL-13 is a critical mediator of allergic asthma and associated airway hyperresponsiveness. IL-13 acts through a receptor complex comprised of IL-13Rα1 and IL-4Rα subunits with subsequent activation of signal transducer and activator of transcription 6 (STAT6). The IL-13Rα2 receptor may act as a decoy receptor. In human airway smooth muscle (HASM) cells, IL-13 enhances cellular proliferation, calcium responses to agonists and induces eotaxin production. We investigated the effects of pre-treatment with IL-4, IL-13 and IFN-γ on the responses of HASM cells to IL-13.MethodsCultured HASM were examined for expression of IL-13 receptor subunits using polymerase chain reaction, immunofluorescence microscopy and flow cytometry. Effects of cytokine pre-treatment on IL-13-induced cell responses were assessed by looking at STAT6 phosphorylation using Western blot, eotaxin secretion and calcium responses to histamine.ResultsIL-13Rα1, IL-4Rα and IL-13Rα2 subunits were expressed on HASM cells. IL-13 induced phosphorylation of STAT6 which reached a maximum by 30 minutes. Pre-treatment with IL-4, IL-13 and, to a lesser degree, IFN-γ reduced peak STAT6 phosphorylation in response to IL-13. IL-13, but not IFN-γ, pre-treatment abrogated IL-13-induced eotaxin secretion. Pre-treatment with IL-4 or IL-13 abrogated IL-13-induced augmentation of the calcium transient evoked by histamine. Cytokine pre-treatment did not affect expression of IL-13Rα1 and IL-4Rα but increased expression of IL-13Rα2. An anti-IL-13Rα2 neutralizing antibody did not prevent the cytokine pre-treatment effects on STAT6 phosphorylation. Cytokine pre-treatment increased SOCS-1, but not SOCS-3, mRNA expression which was not associated with significant increases in protein expression.ConclusionPre-treatment with IL-4 and IL-13, but not IFN-γ, induced desensitization of the HASM cells to IL-13 as measured by eotaxin secretion and calcium transients to histamine. The mechanism of IL-4 and IL-13 induced desensitization does not appear to involve either downregulation of receptor expression or induction of the IL-13Rα2 or the SOCS proteins.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2012
Paul-André Risse; Linda Kachmar; Oleg S. Matusovsky; Mauro Novali; Fulvio R. Gil; Shiva Javeshghani; Ruth Keary; Christina K. Haston; Marie-Claire Michoud; James G. Martin; Anne-Marie Lauzon
Patients with cystic fibrosis (CF) often suffer from gastrointestinal cramps and intestinal obstruction. The CF transmembrane conductance regulator (CFTR) channel has been shown to be expressed in vascular and airway smooth muscle (SM). We hypothesized that the absence of CFTR expression alters the gastrointestinal SM function and that these alterations may show strain-related differences in the mouse. The aim of this study was to measure the contractile properties of the ileal SM in two CF mouse models. CFTR(-/-) and CFTR(+/+) mice were studied on BALB/cJ and C57BL/6J backgrounds. Responsiveness of ileal strips to electrical field stimulation (EFS), methacholine (MCh), and isoproterenol was measured. The mass and the cell density of SM layers were measured morphometrically. Finally, the maximal velocity of shortening (Vmax) and the expression of the fast (+)insert myosin isoform were measured in the C57BL/6J ileum. Ileal hyperreactivity was observed in response to EFS and MCh in CFTR(-/-) compared with CFTR(+/+) mice in C57BL/6J background. This latter observation was not reproduced by acute inhibition of CFTR with CFTR(inh)172. BALB/cJ CFTR(-/-) mice exhibited a significant increase of SM mass with a lower density of cells compared with CFTR(+/+), whereas no difference was observed in the C57BL/6J background. In addition, in this latter strain, ileal strips from CFTR(-/-) exhibited a significant increase in Vmax compared with control and expressed a greater proportion of the fast (+)insert SM myosin isoform with respect to total myosin. BALB/cJ CFTR(-/-) ilium had a greater relaxation to isoproterenol than the CFTR(+/+) mice when precontracted with EFS, but no difference was observed in response to exogeneous MCh. In vivo, the lack of CFTR expression induces a different SM ileal phenotype in different mouse strains, supporting the importance of modifier genes in determining intestinal SM properties.
American Journal of Physiology-cell Physiology | 2006
Vasanthi Govindaraju; Marie-Claire Michoud; Mustafa Al-Chalabi; Pasquale Ferraro; William S. Powell; James G. Martin
American Journal of Epidemiology | 1995
Michael S. Kramer; Allan L. Coates; Marie-Claire Michoud; Suzanne Dagenais; Dimitra Moshonas; G. Michael Davis; Emily F. Hamilton; Bahi Nuwayhid; A. K. Joshi; Apostolos Papageorgiou; Robert H. Usher
American Journal of Respiratory Cell and Molecular Biology | 2003
Karim Maghni; Marie-Claire Michoud; Manjula Alles; Alexandra Rubin; Vasanthi Govindaraju; Catherine Meloche; James G. Martin