Marie-Claude Gaillard
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Claude Gaillard.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Danielle Chabardès-Garonne; Arnaud Méjean; Jean-Christophe Aude; Lydie Cheval; Antonio Di Stefano; Marie-Claude Gaillard; Martine Imbert-Teboul; M. Wittner; Chanth Balian; Véronique Anthouard; Catherine Robert; Béatrice Segurens; Patrick Wincker; Jean Weissenbach; Alain Doucet; Jean-Marc Elalouf
To gain a molecular understanding of kidney functions, we established a high-resolution map of gene expression patterns in the human kidney. The glomerulus and seven different nephron segments were isolated by microdissection from fresh tissue specimens, and their transcriptome was characterized by using the serial analysis of gene expression (SAGE) method. More than 400,000 mRNA SAGE tags were sequenced, making it possible to detect in each structure transcripts present at 18 copies per cell with a 95% confidence level. Expression of genes responsible for nephron transport and permeability properties was evidenced through transcripts for 119 solute carriers, 84 channels, 43 ion-transport ATPases, and 12 claudins. Searching for differences between the transcriptomes, we found 998 transcripts greatly varying in abundance from one nephron portion to another. Clustering analysis of these transcripts evidenced different extents of similarity between the nephron portions. Approximately 75% of the differentially distributed transcripts corresponded to cDNAs of known or unknown function that are accurately mapped in the human genome. This systematic large-scale analysis of individual structures of a complex human tissue reveals sets of genes underlying the function of well-defined nephron portions. It also provides quantitative expression data for a variety of genes mutated in hereditary diseases and helps in sorting candidate genes for renal diseases that affect specific portions of the human nephron.
Translational Psychiatry | 2013
Gaël Quesseveur; Denis J. David; Marie-Claude Gaillard; Patrick Pla; Melody V. Wu; Hai T Nguyen; V Nicolas; Gwennaelle Auregan; Indira David; Alex Dranovsky; Philippe Hantraye; R Hen; Alain M. Gardier; Nicole Déglon; Bruno P. Guiard
The therapeutic activity of selective serotonin (5-HT) reuptake inhibitors (SSRIs) relies on long-term adaptation at pre- and post-synaptic levels. The sustained administration of SSRIs increases the serotonergic neurotransmission in response to a functional desensitization of the inhibitory 5-HT1A autoreceptor in the dorsal raphe. At nerve terminal such as the hippocampus, the enhancement of 5-HT availability increases brain-derived neurotrophic factor (BDNF) synthesis and signaling, a major event in the stimulation of adult neurogenesis. In physiological conditions, BDNF would be expressed at functionally relevant levels in neurons. However, the recent observation that SSRIs upregulate BDNF mRNA in primary cultures of astrocytes strongly suggest that the therapeutic activity of antidepressant drugs might result from an increase in BDNF synthesis in this cell type. In this study, by overexpressing BDNF in astrocytes, we balanced the ratio between astrocytic and neuronal BDNF raising the possibility that such manipulation could positively reverberate on anxiolytic-/antidepressant-like activities in transfected mice. Our results indicate that BDNF overexpression in hippocampal astrocytes produced anxiolytic-/antidepressant-like activity in the novelty suppressed feeding in relation with the stimulation of hippocampal neurogenesis whereas it did not potentiate the effects of the SSRI fluoxetine on these parameters. Moreover, overexpressing BDNF revealed the anxiolytic-like activity of fluoxetine in the elevated plus maze while attenuating 5-HT neurotransmission in response to a blunted downregulation of the 5-HT1A autoreceptor. These results emphasize an original role of hippocampal astrocytes in the synthesis of BDNF, which can act through neurogenesis-dependent and -independent mechanisms to regulate different facets of anxiolytic-like responses.
Neurobiology of Disease | 2005
Diana Zala; Alexandra Benchoua; Emmanuel Brouillet; Valérie Perrin; Marie-Claude Gaillard; Anne D. Zurn; Patrick Aebischer; Nicole Déglon
A lentiviral vector expressing a mutant huntingtin protein (htt171-82Q) was used to generate a chronic model of Huntingtons disease (HD) in rat primary striatal cultures. In this model, the majority of neurons expressed the transgene so that Western blot analysis and flow cytometry measurement could complement immunohistological evaluation. Mutant huntingtin produced a slowly progressing pathology characterized after 1 month by the appearance of neuritic aggregates followed by intranuclear inclusions, morphological anomalies of neurites, loss of neurofilament 160, increased expression in stress response protein Hsp70, and later loss of neuronal markers such as NeuN and MAP-2. At 2 months post-infection, a significant increase in TUNEL-positive cells confirmed actual striatal cell loss. Interestingly, cortical cultures infected with the same vector showed no sign of neuronal dysfunction despite accumulation of numerous inclusions. We finally examined whether the trophic factors CNTF and BDNF that were found neuroprotective in acute HD models could prevent striatal degeneration in a chronic model. Results demonstrated that both agents were neuroprotective without modifying inclusion formation. The present study demonstrates that viral vectors coding for mutant htt provides an advantageous system for histological and biochemical analysis of HD pathogenesis in primary striatal cultures.
Human Molecular Genetics | 2008
Alexandra Benchoua; Yaël Trioulier; Elsa Diguet; Carole Malgorn; Marie-Claude Gaillard; Noelle Dufour; Jean-Marc Elalouf; Stan Krajewski; Philippe Hantraye; Nicole Déglon; Emmanuel Brouillet
In neurodegenerative disorders associated with primary or secondary mitochondrial defects such as Huntingtons disease (HD), cells of the striatum are particularly vulnerable to cell death, although the mechanisms by which this cell death is induced are unclear. Dopamine, found in high concentrations in the striatum, may play a role in striatal cell death. We show that in primary striatal cultures, dopamine increases the toxicity of an N-terminal fragment of mutated huntingtin (Htt-171-82Q). Mitochondrial complex II protein (mCII) levels are reduced in HD striatum, indicating that this protein may be important for dopamine-mediated striatal cell death. We found that dopamine enhances the toxicity of the selective mCII inhibitor, 3-nitropropionic acid. We also demonstrated that dopamine doses that are insufficient to produce cell loss regulate mCII expression at the mRNA, protein and catalytic activity level. We also show that dopamine-induced down-regulation of mCII levels can be blocked by several dopamine D2 receptor antagonists. Sustained overexpression of mCII subunits using lentiviral vectors abrogated the effects of dopamine, both by high dopamine concentrations alone and neuronal death induced by low dopamine concentrations together with Htt-171-82Q. This novel pathway links dopamine signaling and regulation of mCII activity and could play a key role in oxidative energy metabolism and explain the vulnerability of the striatum in neurodegenerative diseases.
Molecular & Cellular Proteomics | 2009
Benoît Bernay; Marie-Claude Gaillard; Vilém Guryča; Anouk Emadali; Lauriane Kuhn; Anne Bertrand; Isabelle Detraz; Carole Carcenac; Marc Savasta; Emmanuel Brouillet; Jérôme Garin; Jean-Marc Elalouf
The striatum, a major component of the brain basal nuclei, is central for planning and executing voluntary movements and undergoes lesions in neurodegenerative disorders such as Huntington disease. To perform highly integrated tasks, the striatum relies on a complex network of communication within and between brain regions with a key role devoted to secreted molecules. To characterize the rat striatum secretome, we combined in vivo microdialysis together with proteomics analysis of trypsin digests and peptidomics studies of native fragments. This versatile approach, carried out using different microdialysis probes and mass spectrometer devices, allowed evidencing with high confidence the expression of 88 proteins and 100 processed peptides. Their secretory pathways were predicted by in silico analysis. Whereas high molecular weight proteins were mainly secreted by the classical mode (94%), low molecular weight proteins equally used classical and non-classical modes (53 and 47%, respectively). In addition, our results suggested alternative secretion mechanisms not predicted by bioinformatics tools. Based on spectrum counting, we performed a relative quantification of secreted proteins and peptides in both basal and neuronal depolarization conditions. This allowed detecting a series of neuropeptide precursors and a 6-fold increase for neurosecretory protein VGF and proenkephalin (PENK) levels. A focused investigation and a long peptide experiment led to the identification of new secreted non-opioid PENK peptides, referred to as PENK 114–133, PENK 239–260, and PENK 143–185. Moreover we showed that injecting synthetic PENK 114–133 and PENK 239–260 into the striatum robustly increased glutamate release in this region. Thus, the combination of microdialysis and versatile proteomics methods shed new light on the secreted protein repertoire and evidenced novel neuropeptide transmitters.
Physiological Genomics | 2008
Camille Brochier; Marie-Claude Gaillard; Elsa Diguet; Nicolas Caudy; Carole Dossat; Béatrice Segurens; Patrick Wincker; Emmanuel Roze; Jocelyne Caboche; Philippe Hantraye; Emmanuel Brouillet; Jean-Marc Elalouf; Michel de Chaldée
Using serial analysis of gene expression, we collected quantitative transcriptome data in 11 regions of the adult wild-type mouse brain: the orbital, prelimbic, cingulate, motor, somatosensory, and entorhinal cortices, the caudate-putamen, the nucleus accumbens, the thalamus, the substantia nigra, and the ventral tegmental area. With >1.2 million cDNA tags sequenced, this database is a powerful resource to explore brain functions and disorders. As an illustration, we performed interregional comparisons and found 315 differential transcripts. Most of them are poorly characterized and 20% lack functional annotation. For 78 differential transcripts, we provide independent expression level measurements in mouse brain regions by real-time quantitative RT-PCR. We also show examples where we used in situ hybridization to achieve infrastructural resolution. For 30 transcripts, we next demonstrated that regional enrichment is conserved in the human brain. We then quantified the expression levels of region-enriched transcripts in the R6/2 mouse model of Huntington disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease and observed significant alterations in the striatum, cerebral cortex, thalamus and substantia nigra of R6/2 mice and in the striatum of MPTP-treated mice. These results show that the gene expression data provided here for the mouse brain can be used to explore pathophysiological models and disclose transcripts differentially expressed in human brain regions.
Wiley Interdisciplinary Reviews - Rna | 2016
Adeline Berger; Séverine Maire; Marie-Claude Gaillard; José-Alain Sahel; Philippe Hantraye; Alexis-Pierre Bemelmans
Spliceosome‐mediated RNA trans‐splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post‐transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre‐mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans‐splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans‐splicing, review the different strategies that are under evaluation to lead to efficient trans‐splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487–498. doi: 10.1002/wrna.1347
Journal of Cerebral Blood Flow and Metabolism | 2014
Lydie Boussicault; Anne-Sophie Hérard; Noel Y. Calingasan; Fanny Petit; Carole Malgorn; Nicolas Merienne; Caroline Jan; Marie-Claude Gaillard; Rodrigo Lerchundi; Luis Felipe Barros; Carole Escartin; Thierry Delzescaux; Jean Mariani; Philippe Hantraye; M. Flint Beal; Emmanuel Brouillet; Céline Véga; Gilles Bonvento
Huntingtons disease (HD) is caused by cytosine-adenine-guanine (CAG) repeat expansions in the huntingtin (Htt) gene. Although early energy metabolic alterations in HD are likely to contribute to later neurodegenerative processes, the cellular and molecular mechanisms responsible for these metabolic alterations are not well characterized. Using the BACHD mice that express the full-length mutant huntingtin (mHtt) protein with 97 glutamine repeats, we first demonstrated localized in vivo changes in brain glucose use reminiscent of what is observed in premanifest HD carriers. Using biochemical, molecular, and functional analyses on different primary cell culture models from BACHD mice, we observed that mHtt does not directly affect metabolic activity in a cell autonomous manner. However, coculture of neurons with astrocytes from wild-type or BACHD mice identified mutant astrocytes as a source of adverse non-cell autonomous effects on neuron energy metabolism possibly by increasing oxidative stress. These results suggest that astrocyte-to-neuron signaling is involved in early energy metabolic alterations in HD.
Neurobiology of Aging | 2015
Laetitia Francelle; Laurie Galvan; Marie-Claude Gaillard; Fanny Petit; Benoît Bernay; Martine Guillermier; Gilles Bonvento; Noelle Dufour; Jean-Marc Elalouf; Philippe Hantraye; Nicole Déglon; Michel de Chaldée; Emmanuel Brouillet
A large number of gene products that are enriched in the striatum have ill-defined functions, although they may have key roles in age-dependent neurodegenerative diseases affecting the striatum, especially Huntington disease (HD). In the present study, we focused on Abhd11os, (called ABHD11-AS1 in human) which is a putative long noncoding RNA (lncRNA) whose expression is enriched in the mouse striatum. We confirm that despite the presence of 2 small open reading frames (ORFs) in its sequence, Abhd11os is not translated into a detectable peptide in living cells. We demonstrate that Abhd11os levels are markedly reduced in different mouse models of HD. We performed in vivo experiments in mice using lentiviral vectors encoding either Abhd11os or a small hairpin RNA targeting Abhd11os. Results show that Abhd11os overexpression produces neuroprotection against an N-terminal fragment of mutant huntingtin, whereas Abhd11os knockdown is protoxic. These novel results indicate that the loss lncRNA Abhd11os likely contribute to striatal vulnerability in HD. Our study emphasizes that lncRNA may play crucial roles in neurodegenerative diseases.
PLOS ONE | 2013
Romina Aron Badin; Brigitte Spinnewyn; Marie-Claude Gaillard; Caroline Jan; Carole Malgorn; Nadja Van Camp; Frédéric Dollé; Martine Guillermier; Sabrina Boulet; Anne Bertrand; Marc Savasta; Michel Auguet; Emmanuel Brouillet; Pierre-Etienne Chabrier; Philippe Hantraye
The development of dyskinesias following chronic L-DOPA replacement therapy remains a major problem in the long-term treatment of Parkinson’s disease. This study aimed at evaluating the effect of IRC-082451 (base of BN82451), a novel multitargeting hybrid molecule, on L-DOPA-induced dyskinesias (LIDs) and hypolocomotor activity in a non-human primate model of PD. IRC-082451 displays multiple properties: it inhibits neuronal excitotoxicity (sodium channel blocker), oxidative stress (antioxidant) and neuroinflammation (cyclooxygenase inhibitor) and is endowed with mitochondrial protective properties. Animals received daily MPTP injections until stably parkinsonian. A daily treatment with increasing doses of L-DOPA was administered to parkinsonian primates until the appearance of dyskinesias. Then, different treatment regimens and doses of IRC-082451 were tested and compared to the benchmark molecule amantadine. Primates were regularly filmed and videos were analyzed with specialized software. A novel approach combining the analysis of dyskinesias and locomotor activity was used to determine efficacy. This analysis yielded the quantification of the total distance travelled and the incidence of dyskinesias in 7 different body parts. A dose-dependent efficacy of IRC-082451 against dyskinesias was observed. The 5 mg/kg dose was best at attenuating the severity of fully established LIDs. Its effect was significantly different from that of amantadine since it increased spontaneous locomotor activity while reducing LIDs. This dose was effective both acutely and in a 5-day sub-chronic treatment. Moreover, positron emission tomography scans using radiolabelled dopamine demonstrated that there was no direct interference between treatment with IRC-082451 and dopamine metabolism in the brain. Finally, post-mortem analysis indicated that this reduction in dyskinesias was associated with changes in cFOS, FosB and ARC mRNA expression levels in the putamen. The data demonstrates the antidyskinetic efficacy of IRC-082451 in a primate model of PD with motor complications and opens the way to the clinical application of this treatment for the management of LIDs.