Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie Craigon is active.

Publication


Featured researches published by Marie Craigon.


Nature Neuroscience | 2008

Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses.

Sofia Papadia; Francesc X. Soriano; Frédéric Léveillé; Marc-André Martel; Kelly A. Dakin; Henrik H. Hansen; Angela M. Kaindl; Marco Sifringer; Jill H. Fowler; Vanya Stefovska; Grahame J. Mckenzie; Marie Craigon; Roderick A. Corriveau; Peter Ghazal; Karen Horsburgh; Bruce A. Yankner; David J. A. Wyllie; Chrysanthy Ikonomidou; Giles E. Hardingham

Intrinsic antioxidant defenses are important for neuronal longevity. We found that in rat neurons, synaptic activity, acting via NMDA receptor (NMDAR) signaling, boosted antioxidant defenses by making changes to the thioredoxin-peroxiredoxin (Prx) system. Synaptic activity enhanced thioredoxin activity, facilitated the reduction of overoxidized Prxs and promoted resistance to oxidative stress. Resistance was mediated by coordinated transcriptional changes; synaptic NMDAR activity inactivated a previously unknown Forkhead box O target gene, the thioredoxin inhibitor Txnip. Conversely, NMDAR blockade upregulated Txnip in vivo and in vitro, where it bound thioredoxin and promoted vulnerability to oxidative damage. Synaptic activity also upregulated the Prx reactivating genes Sesn2 (sestrin 2) and Srxn1 (sulfiredoxin), via C/EBPβ and AP-1, respectively. Mimicking these expression changes was sufficient to strengthen antioxidant defenses. Trans-synaptic stimulation of synaptic NMDARs was crucial for boosting antioxidant defenses; chronic bath activation of all (synaptic and extrasynaptic) NMDARs induced no antioxidative effects. Thus, synaptic NMDAR activity may influence the progression of pathological processes associated with oxidative damage.


Immunity | 2013

The Transcription Factor STAT-1 Couples Macrophage Synthesis of 25-Hydroxycholesterol to the Interferon Antiviral Response

Mathieu Blanc; Wei Yuan Hsieh; Kevin Robertson; Kai A. Kropp; Thorsten Forster; Guanghou Shui; Paul Lacaze; Steven Watterson; Samantha J. Griffiths; Nathanael J. Spann; Anna Meljon; Simon G. Talbot; Kathiresan Krishnan; Douglas F. Covey; Markus R. Wenk; Marie Craigon; Zsolts Ruzsics; Jürgen Haas; Ana Angulo; William J. Griffiths; Christopher K. Glass; Yuqin Wang; Peter Ghazal

Summary Recent studies suggest that the sterol metabolic network participates in the interferon (IFN) antiviral response. However, the molecular mechanisms linking IFN with the sterol network and the identity of sterol mediators remain unknown. Here we report a cellular antiviral role for macrophage production of 25-hydroxycholesterol (cholest-5-en-3β,25-diol, 25HC) as a component of the sterol metabolic network linked to the IFN response via Stat1. By utilizing quantitative metabolome profiling of all naturally occurring oxysterols upon infection or IFN-stimulation, we reveal 25HC as the only macrophage-synthesized and -secreted oxysterol. We show that 25HC can act at multiple levels as a potent paracrine inhibitor of viral infection for a broad range of viruses. We also demonstrate, using transcriptional regulatory-network analyses, genetic interventions and chromatin immunoprecipitation experiments that Stat1 directly coupled Ch25h regulation to IFN in macrophages. Our studies describe a physiological role for 25HC as a sterol-lipid effector of an innate immune pathway.


PLOS Pathogens | 2013

A Systematic Analysis of Host Factors Reveals a Med23-Interferon-λ Regulatory Axis against Herpes Simplex Virus Type 1 Replication

Samantha J. Griffiths; Manfred Koegl; Chris Boutell; Helen L. Zenner; Colin M. Crump; Francesca Pica; Orland Gonzalez; Caroline C. Friedel; Gerald Barry; Kim Martin; Marie Craigon; Rui Chen; Lakshmi N. Kaza; Even Fossum; John K. Fazakerley; Stacey Efstathiou; Antonio Volpi; Ralf Zimmer; Peter Ghazal; Juergen Haas

Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome.


Nature Communications | 2014

Identification of a human neonatal immune-metabolic network associated with bacterial infection

Claire Smith; Paul Dickinson; Thorsten Forster; Marie Craigon; Alan J. Ross; Mizanur Khondoker; Alasdair Ivens; David J. Lynn; Judith Orme; Allan Jackson; Paul Lacaze; Katie L. Flanagan; Benjamin J. Stenson; Peter Ghazal

Understanding how human neonates respond to infection remains incomplete. Here, a system-level investigation of neonatal systemic responses to infection shows a surprisingly strong but unbalanced homeostatic immune response; developing an elevated set-point of myeloid regulatory signalling and sugar-lipid metabolism with concomitant inhibition of lymphoid responses. Innate immune-negative feedback opposes innate immune activation while suppression of T-cell co-stimulation is coincident with selective upregulation of CD85 co-inhibitory pathways. By deriving modules of co-expressed RNAs, we identify a limited set of networks associated with bacterial infection that exhibit high levels of inter-patient variability. Whereas, by integrating immune and metabolic pathways, we infer a patient-invariant 52-gene-classifier that predicts bacterial infection with high accuracy using a new independent patient population. This is further shown to have predictive value in identifying infection in suspected cases with blood culture-negative tests. Our results lay the foundation for future translation of host pathways in advancing diagnostic, prognostic and therapeutic strategies for neonatal sepsis.


Journal of Immunology | 2013

Uterine NK Cells Regulate Endometrial Bleeding in Women and Are Suppressed by the Progesterone Receptor Modulator Asoprisnil

Julia Wilkens; Victoria Male; Peter Ghazal; Thorsten Forster; Douglas A. Gibson; Alistair Williams; Savita L. Brito-Mutunayagam; Marie Craigon; Paula Lourenco; Iain T. Cameron; Kristof Chwalisz; Ashley Moffett; Hilary O. D. Critchley

Uterine NK cells (uNK) play a role in the regulation of placentation, but their functions in nonpregnant endometrium are not understood. We have previously reported suppression of endometrial bleeding and alteration of spiral artery morphology in women exposed to asoprisnil, a progesterone receptor modulator. We now compare global endometrial gene expression in asoprisnil-treated versus control women, and we demonstrate a statistically significant reduction of genes in the IL-15 pathway, known to play a key role in uNK development and function. Suppression of IL-15 by asoprisnil was also observed at mRNA level (p < 0.05), and immunostaining for NK cell marker CD56 revealed a striking reduction of uNK in asoprisnil-treated endometrium (p < 0.001). IL-15 levels in normal endometrium are progesterone-responsive. Progesterone receptor (PR) positive stromal cells transcribe both IL-15 and IL-15RA. Thus, the response of stromal cells to progesterone will be to increase IL-15 trans-presentation to uNK, supporting their expansion and differentiation. In asoprisnil-treated endometrium, there is a marked downregulation of stromal PR expression and virtual absence of uNK. These novel findings indicate that the IL-15 pathway provides a missing link in the complex interplay among endometrial stromal cells, uNK, and spiral arteries affecting physiologic and pathologic endometrial bleeding.


BMC Genomics | 2009

Combined genome-wide expression profiling and targeted RNA interference in primary mouse macrophages reveals perturbation of transcriptional networks associated with interferon signalling

Paul Lacaze; Sobia Raza; Garwin Sing; David C. Page; Thorsten Forster; Petter Storm; Marie Craigon; Tarif Awad; Peter Ghazal; Tom C. Freeman

BackgroundInterferons (IFNs) are potent antiviral cytokines capable of reprogramming the macrophage phenotype through the induction of interferon-stimulated genes (ISGs). Here we have used targeted RNA interference to suppress the expression of a number of key genes associated with IFN signalling in murine macrophages prior to stimulation with interferon-gamma. Genome-wide changes in transcript abundance caused by siRNA activity were measured using exon-level microarrays in the presence or absence of IFNγ.ResultsTransfection of murine bone-marrow derived macrophages (BMDMs) with a non-targeting (control) siRNA and 11 sequence-specific siRNAs was performed using a cationic lipid transfection reagent (Lipofectamine2000) prior to stimulation with IFNγ. Total RNA was harvested from cells and gene expression measured on Affymetrix GeneChip Mouse Exon 1.0 ST Arrays. Network-based analysis of these data revealed six siRNAs to cause a marked shift in the macrophage transcriptome in the presence or absence IFNγ. These six siRNAs targeted the Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2 transcripts. The perturbation of the transcriptome by the six siRNAs was highly similar in each case and affected the expression of over 600 downstream transcripts. Regulated transcripts were clustered based on co-expression into five major groups corresponding to transcriptional networks associated with the type I and II IFN response, cell cycle regulation, and NF-KB signalling. In addition we have observed a significant non-specific immune stimulation of cells transfected with siRNA using Lipofectamine2000, suggesting use of this reagent in BMDMs, even at low concentrations, is enough to induce a type I IFN response.ConclusionOur results provide evidence that the type I IFN response in murine BMDMs is dependent on Ifnb1, Irf3, Irf5, Stat1, Stat2 and Nfkb2, and that siRNAs targeted to these genes results in perturbation of key transcriptional networks associated with type I and type II IFN signalling and a suppression of macrophage M1 polarization.


BMC Genomics | 2005

GPX-Macrophage Expression Atlas: A database for expression profiles of macrophages challenged with a variety of pro-inflammatory, anti-inflammatory, benign and pathogen insults

Graeme Grimes; Stuart L. Moodie; John S. Beattie; Marie Craigon; Paul Dickinson; Thorsten Forster; Andrew D Livingston; Muriel Mewissen; Kevin Robertson; Alan J. Ross; Garwin Sing; Peter Ghazal

BackgroundMacrophages play an integral role in the host immune system, bridging innate and adaptive immunity. As such, they are finely attuned to extracellular and intracellular stimuli and respond by rapidly initiating multiple signalling cascades with diverse effector functions. The macrophage cell is therefore an experimentally and clinically amenable biological system for the mapping of biological pathways. The goal of the macrophage expression atlas is to systematically investigate the pathway biology and interaction network of macrophages challenged with a variety of insults, in particular via infection and activation with key inflammatory mediators. As an important first step towards this we present a single searchable database resource containing high-throughput macrophage gene expression studies.DescriptionThe GPX Macrophage Expression Atlas (GPX-MEA) is an online resource for gene expression based studies of a range of macrophage cell types following treatment with pathogens and immune modulators. GPX-MEA follows the MIAME standard and includes an objective quality score with each experiment. It places special emphasis on rigorously capturing the experimental design and enables the searching of expression data from different microarray experiments. Studies may be queried on the basis of experimental parameters, sample information and quality assessment score. The ability to compare the expression values of individual genes across multiple experiments is provided. In addition, the database offers access to experimental annotation and analysis files and includes experiments and raw data previously unavailable to the research community.ConclusionGPX-MEA is the first example of a quality scored gene expression database focussed on a macrophage cellular system that allows efficient identification of transcriptional patterns. The resource will provide novel insights into the phenotypic response of macrophages to a variety of benign, inflammatory, and pathogen insults. GPX-MEA is available through the GPX website at http://www.gti.ed.ac.uk/GPX.


Genomics data | 2015

Whole blood gene expression profiling of neonates with confirmed bacterial sepsis.

Paul Dickinson; Claire Smith; Thorsten Forster; Marie Craigon; Alan J. Ross; Mizanur Khondoker; Alasdair Ivens; David J. Lynn; Judith Orme; Allan Jackson; Paul Lacaze; Katie L. Flanagan; Benjamin J. Stenson; Peter Ghazal

Neonatal infection remains a primary cause of infant morbidity and mortality worldwide and yet our understanding of how human neonates respond to infection remains incomplete. Changes in host gene expression in response to infection may occur in any part of the body, with the continuous interaction between blood and tissues allowing blood cells to act as biosensors for the changes. In this study we have used whole blood transcriptome profiling to systematically identify signatures and the pathway biology underlying the pathogenesis of neonatal infection. Blood samples were collected from neonates at the first clinical signs of suspected sepsis alongside age matched healthy control subjects. Here we report a detailed description of the study design, including clinical data collected, experimental methods used and data analysis workflows and which correspond with data in Gene Expression Omnibus (GEO) data sets (GSE25504). Our data set has allowed identification of a patient invariant 52-gene classifier that predicts bacterial infection with high accuracy and lays the foundation for advancing diagnostic, prognostic and therapeutic strategies for neonatal sepsis.


Analyst | 2007

Quantitative assessment of human whole blood RNA as a potential biomarker for infectious disease

Claire Smith; Paul Dickinson; Thorsten Forster; Mizanur Khondoker; Marie Craigon; Alan J. Ross; Petter Storm; Stewart T. G. Burgess; Paul Lacaze; Benjamin J. Stenson; Peter Ghazal

Infection remains a significant cause of morbidity and mortality especially in newborn infants. Analytical methods for diagnosing infection are severely limited in terms of sensitivity and specificity and require relatively large samples. It is proposed that stringent regulation of the human transcriptome affords a new molecular diagnostic approach based on measuring a highly specific systemic inflammatory response to infection, detectable at the RNA level. This proposition raises a number of as yet poorly characterised technical and biological variation issues that urgently need to be addressed. Here we report a quantitative assessment of methodological approaches for processing and extraction of RNA from small samples of infant whole blood and applying analysis of variation from biochip measurements. On the basis of testing and selection from a battery of assays we show that sufficient high quality RNA for analysis using multiplex array technology can be obtained from small neonatal samples. These findings formed the basis of implementing a set of robust clinical and experimental standard operating procedures for whole blood RNA samples from 58 infants. Modelling and analysis of variation between samples revealed significant sources of variation from the point of sample collection to processing and signal generation. These experiments further permitted power calculations to be run indicating the tractability and requirements of using changes in RNA expression profiles to detect different states between patient groups. Overall the results of our investigation provide an essential first step toward facilitating an alternative way for diagnosing infection from very small neonatal blood samples, providing methods and requirements for future chip-based studies.


Frontiers in Immunology | 2017

Genomic programming of human neonatal dendritic cells in congenital systemic and in vitro cytomegalovirus infection reveal plastic and robust immune pathway biology responses

Widad Alsheikhly Dantoft; Pablo Martínez-Vicente; James Jafali; Lara Pérez-Martínez; Kim Martin; Konstantinos Kotzamanis; Marie Craigon; Manfred Auer; Neil T. Young; Paul Walsh; Arnaud Marchant; Ana Angulo; Thorsten Forster; Peter Ghazal

Neonates and especially premature infants are highly susceptible to infection but still can have a remarkable resilience that is poorly understood. The view that neonates have an incomplete or deficient immune system is changing. Human neonatal studies are challenging, and elucidating host protective responses and underlying cognate pathway biology, in the context of viral infection in early life, remains to be fully explored. In both resource rich and poor settings, human cytomegalovirus (HCMV) is the most common cause of congenital infection. By using unbiased systems analyses of transcriptomic resources for HCMV neonatal infection, we find the systemic response of a preterm congenital HCMV infection, involves a focused IFN regulatory response associated with dendritic cells. Further analysis of transcriptional-programming of neonatal dendritic cells in response to HCMV infection in culture revealed an early dominant IFN-chemokine regulatory subnetworks, and at later times the plasticity of pathways implicated in cell-cycle control and lipid metabolism. Further, we identify previously unknown suppressed networks associated with infection, including a select group of GPCRs. Functional siRNA viral growth screen targeting 516-GPCRs and subsequent validation identified novel GPCR-dependent antiviral (ADORA1) and proviral (GPR146, RGS16, PTAFR, SCTR, GPR84, GPR85, NMUR2, FZ10, RDS, CCL17, and SORT1) roles. By contrast a gene family cluster of protocadherins is significantly differentially induced in neonatal cells, suggestive of possible immunomodulatory roles. Unexpectedly, programming responses of adult and neonatal dendritic cells, upon HCMV infection, demonstrated comparable quantitative and qualitative responses showing that functionally, neonatal dendritic cell are not overly compromised. However, a delay in responses of neonatal cells for IFN subnetworks in comparison with adult-derived cells are notable, suggestive of subtle plasticity differences. These findings support a set-point control mechanism rather than immaturity for explaining not only neonatal susceptibility but also resilience to infection. In summary, our findings show that neonatal HCMV infection leads to a highly plastic and functional robust programming of dendritic cells in vivo and in vitro. In comparison with adults, a minimal number of subtle quantitative and temporal differences may contribute to variability in host susceptibility and resilience, in a context dependent manner.

Collaboration


Dive into the Marie Craigon's collaboration.

Top Co-Authors

Avatar

Peter Ghazal

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Lacaze

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Alan J. Ross

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar

Claire Smith

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge