Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie Dufresne is active.

Publication


Featured researches published by Marie Dufresne.


Nature | 2010

Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

Li-Jun Ma; H. Charlotte van der Does; Katherine A. Borkovich; Jeffrey J. Coleman; Marie Josée Daboussi; Antonio Di Pietro; Marie Dufresne; Michael Freitag; Manfred Grabherr; Bernard Henrissat; Petra M. Houterman; Seogchan Kang; Won Bo Shim; Charles P. Woloshuk; Xiaohui Xie; Jin-Rong Xu; John Antoniw; Scott E. Baker; Burton H. Bluhm; Andrew Breakspear; Daren W. Brown; Robert A. E. Butchko; Sinéad B. Chapman; Richard M. R. Coulson; Pedro M. Coutinho; Etienne Danchin; Andrew C. Diener; Liane R. Gale; Donald M. Gardiner; Stephen A. Goff

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.


Molecular Plant-microbe Interactions | 2001

Definition of Tissue-Specific and General Requirements for Plant Infection in a Phytopathogenic Fungus

Marie Dufresne; Anne Osbourn

Although plant diseases are usually characterized by the part of the plant that is affected (e.g., leaf spots, root rots, wilts), surprisingly little is known about the factors that condition the ability of pathogens to colonize different plant tissues. Here we demonstrate that the leaf blast pathogen Magnaporthe grisea also can infect plant roots, and we exploit this finding to distinguish tissue-specific and general requirements for plant infection. Tests of a M. grisea mutant collection identified some mutants that were defective specifically in infection of either leaves or roots, and others such as the map kinase mutant pmk1 that were generally defective in pathogenicity. Conservation of a functional PMK1-related MAP kinase in the root pathogen Gaeumannomyces graminis was also demonstrated. Exploitation of the ability of M. grisea to infect distinct plant tissues thus represents a powerful tool for the comprehensive dissection of genetic determinants of tissue specificity and global requirements for plant infection.


Molecular Plant-microbe Interactions | 1998

clk1, a serine/threonine protein kinase-encoding gene, is involved in pathogenicity of Colletotrichum lindemuthianum on common bean

Marie Dufresne; John A. Bailey; Michel Dron; Thierry Langin

A random insertional mutagenesis in Colletotrichum lindemuthianum, the causal agent of common bean anthracnose, generated four mutants that showed altered pathogenicity when tested on intact seedlings, excised leaves, and/or excised hypocotyls. One of these mutants, H290, produced very few lesions on bean leaves and appeared affected in its ability to penetrate the leaf cuticle. Molecular analyses showed that the border sequences of the unique integration site of the disrupting pAN7-1 plasmid in the mutant exhibited homology with conserved domains of serine/threonine protein kinases. The corresponding wild-type sequences were cloned and a gene replacement vector with a mutated copy harboring a selection marker constructed. Transformation of the wild-type pathogen produced a strain with a phenotype identical to the original mutant. Genomic and cDNA sequences indicated that the disrupted gene is a member of the serine/threonine protein kinase family. The gene, called clk1 (Colletotrichum lindemuthianum kinase 1), was weakly expressed in the mycelium of the wild-type strain grown on rich and minimal synthetic media but was undetectable during the infection even when a sensitive reverse transcriptase-polymerase chain reaction methodology was used. This study represents the first characterization of altered pathogenicity mutants in C. lindemuthianum produced by random mutagenesis and demonstrates the involvement of a member of the serine/threonine kinase gene family in the early steps of the infection process.


The Plant Cell | 2000

A GAL4-like Protein Is Involved in the Switch between Biotrophic and Necrotrophic Phases of the Infection Process of Colletotrichum lindemuthianum on Common Bean

Marie Dufresne; Sarah Perfect; Anne-Laure Pellier; John A. Bailey; Thierry Langin

Random insertional mutagenesis was conducted with the hemibiotrophic fungus Colletotrichum lindemuthianum, causal agent of common bean anthracnose. Nine mutants that were altered in their infection process on the host plant were generated. One of these, H433 is a nonpathogenic mutant able to induce necrotic spots on infected leaves rapidly. These spots are similar to those observed during the hypersensitive reaction. Cytological observations showed that the development of the mutant H433 is stopped at the switch between the biotrophic and the necrotrophic phases. This mutant carries two independent insertions of the transforming plasmid pAN7-1. Complementation studies using the wild-type genomic regions corresponding to the two insertions showed that one is responsible for the H433 phenotype. Sequencing analysis identified a single open reading frame that encoded a putative transcriptional activator belonging to the fungal zinc cluster (Zn[II]2Cys6) family. The corresponding gene was designated CLTA1 (for C. lindemuthianum transcriptional activator 1). Expression studies showed that CLTA1 is expressed in low amounts during in vitro culture. Targeted disrupted strains were generated, and they exhibited the same phenotype as the original mutant H433. Complementation of these disrupted strains by the CLTA1 gene led to full restoration of pathogenicity. This study demonstrates that CLTA1 is both a pathogenicity gene and a regulatory gene involved in the switch between biotrophy and necrotrophy of the infection process of a hemibiotrophic fungus.


Molecular Plant Pathology | 2012

The velvet gene, FgVe1, affects fungal development and positively regulates trichothecene biosynthesis and pathogenicity in Fusarium graminearum.

Jawad Merhej; Martin Urban; Marie Dufresne; Kim E. Hammond-Kosack; Florence Richard-Forget; Christian Barreau

Trichothecenes are a group of toxic secondary metabolites produced mainly by Fusarium graminearum (teleomorph: Gibberella zeae) during the infection of crop plants, including wheat, maize, barley, oats, rye and rice. Some fungal genes involved in trichothecene biosynthesis have been shown to encode regulatory proteins. However, the global regulation of toxin biosynthesis is still enigmatic. In addition to the production of secondary metabolites belonging to the trichothecene family, F. graminearum produces the red pigment aurofusarin. The gene regulation underlying the production of aurofusarin is not well understood. The velvet gene (veA) is conserved in various genera of filamentous fungi. Recently, the veA gene from Aspergillus nidulans has been shown to be the key component of the velvet complex regulating development and secondary metabolism. Using blast analyses, we identified the velvet gene from F. graminearum, FgVe1. Disruption of FgVe1 causes several phenotypic effects. However, the complementation of this mutant with the FgVe1 gene restores the wild-type phenotypes. The in vitro phenotypes include hyperbranching of the mycelium, suppression of aerial hyphae formation, reduced hydrophobicity of the mycelium and highly reduced sporulation. Our data also show that FgVe1 modulates the production of the aurofusarin pigment and is essential for the expression of Tri genes and the production of trichothecenes. Pathogenicity studies performed on flowering wheat plants indicate that FgVe1 is a positive regulator of virulence in F. graminearum.


Molecular Plant Pathology | 2006

The MAP kinase-encoding gene MgFus3 of the non-appressorium phytopathogen Mycosphaerella graminicola is required for penetration and in vitro pycnidia formation

Arnaud Cousin; Rahim Mehrabi; Morgane Guilleroux; Marie Dufresne; Theo van der Lee; Cees Waalwijk; Thierry Langin; Gert H. J. Kema

SUMMARY In eukaryotes, a family of serine/threonine protein kinases known as mitogen-activated protein kinases (MAPKs) is involved in the transduction of a variety of extracellular signals and in the regulation of growth and development. We identified a MAPK-encoding gene in Mycosphaerella graminicola strain IPO323 with high homology to the orthologous Fus3 gene of Saccharomyces cerevisiae and designated it MgFus3. Early colony development of the MgFus3 mutants during in vitro growth was similar to those of the wild-type and ectopic controls, but at the later stages of growth MgFus3 mutants did not become melanized, showed altered polarized growth and were unable to produce aerial mycelia. The MgFus3 mutants were non-pathogenic, and detailed microscopic analyses revealed that they failed to colonize the mesophyll tissue owing to the inability to penetrate stomata. Unlike the wild-type strain, MgFus3 mutants were unable to differentiate pycnidia on plant-derived media. Thus, in addition to the crucial role of MgFus3 in the regulation of penetration, it may also be involved in regulating asexual fructification. Hence, MgFus3 can be regarded as a multifunctional pathogenicity factor of M. graminicola.


Molecular Plant-microbe Interactions | 2013

Functional Characterization of Two Clusters of Brachypodium distachyon UDP-Glycosyltransferases Encoding Putative Deoxynivalenol Detoxification Genes

Wolfgang Schweiger; Jean-Claude Pasquet; Thomas Nussbaumer; Maria Paula Kovalsky Paris; Gerlinde Wiesenberger; Catherine Macadré; Christian Ametz; Franz Berthiller; Marc Lemmens; Patrick Saindrenan; Hans-Werner Mewes; Klaus F. X. Mayer; Marie Dufresne; Gerhard Adam

Plant small-molecule UDP-glycosyltransferases (UGT) glycosylate a vast number of endogenous substances but also act in detoxification of metabolites produced by plant-pathogenic microorganisms. The ability to inactivate the Fusarium graminearum mycotoxin deoxynivalenol (DON) into DON-3-O-glucoside is crucial for resistance of cereals. We analyzed the UGT gene family of the monocot model species Brachypodium distachyon and functionally characterized two gene clusters containing putative orthologs of previously identified DON-detoxification genes from Arabidopsis thaliana and barley. Analysis of transcription showed that UGT encoded in both clusters are highly inducible by DON and expressed at much higher levels upon infection with a wild-type DON-producing F. graminearum strain compared with infection with a mutant deficient in DON production. Expression of these genes in a toxin-sensitive strain of Saccharomyces cerevisiae revealed that only two B. distachyon UGT encoded by members of a cluster of six genes homologous to the DON-inactivating barley HvUGT13248 were able to convert DON into DON-3-O-glucoside. Also, a single copy gene from Sorghum bicolor orthologous to this cluster and one of three putative orthologs of rice exhibit this ability. Seemingly, the UGT genes undergo rapid evolution and changes in copy number, making it difficult to identify orthologs with conserved substrate specificity.


Genetics | 2006

Transposition of a Fungal Miniature Inverted-Repeat Transposable Element Through the Action of a Tc1-Like Transposase

Marie Dufresne; Aurélie Hua-Van; Hala Abdel Wahab; Sarrah Ben M'Barek; Christelle Vasnier; Laure Teysset; Gert H. J. Kema; Marie-Josée Daboussi

The mimp1 element previously identified in the ascomycete fungus Fusarium oxysporum has hallmarks of miniature inverted-repeat transposable elements (MITEs): short size, terminal inverted repeats (TIRs), structural homogeneity, and a stable secondary structure. Since mimp1 has no coding capacity, its mobilization requires a transposase-encoding element. On the basis of the similarity of TIRs and target-site preference with the autonomous Tc1-like element impala, together with a correlated distribution of both elements among the Fusarium genus, we investigated the ability of mimp1 to jump upon expression of the impala transposase provided in trans. Under these conditions, we present evidence that mimp1 transposes by a cut-and-paste mechanism into TA dinucleotides, which are duplicated upon insertion. Our results also show that mimp1 reinserts very frequently in genic regions for at least one-third of the cases. We also show that the mimp1/impala double-component system is fully functional in the heterologous species F. graminearum, allowing the development of a highly efficient tool for gene tagging in filamentous fungi.


BMC Genomics | 2014

Differential gene expression and metabolomic analyses of Brachypodium distachyon infected by deoxynivalenol producing and non-producing strains of Fusarium graminearum.

Jean-Claude Pasquet; Sejir Chaouch; Catherine Macadré; Sandrine Balzergue; Stéphanie Huguet; Marie-Laure Martin-Magniette; Floriant Bellvert; Xavier Deguercy; Vincent Thareau; Dimitri Heintz; Patrick Saindrenan; Marie Dufresne

BackgroundFusarium Head Blight (FHB) caused primarily by Fusarium graminearum (Fg) is one of the major diseases of small-grain cereals including bread wheat. This disease both reduces yields and causes quality losses due to the production of deoxynivalenol (DON), the major type B trichothecene mycotoxin. DON has been described as a virulence factor enabling efficient colonization of spikes by the fungus in wheat, but its precise role during the infection process is still elusive. Brachypodium distachyon (Bd) is a model cereal species which has been shown to be susceptible to FHB. Here, a functional genomics approach was performed in order to characterize the responses of Bd to Fg infection using a global transcriptional and metabolomic profiling of B. distachyon plants infected by two strains of F. graminearum: a wild-type strain producing DON (Fgdon+) and a mutant strain impaired in the production of the mycotoxin (Fgdon-).ResultsHistological analysis of the interaction of the Bd21 ecotype with both Fg strains showed extensive fungal tissue colonization with the Fgdon+ strain while the florets infected with the Fgdon- strain exhibited a reduced hyphal extension and cell death on palea and lemma tissues. Fungal biomass was reduced in spikes inoculated with the Fgdon- strain as compared with the wild-type strain. The transcriptional analysis showed that jasmonate and ethylene-signalling pathways are induced upon infection, together with genes encoding putative detoxification and transport proteins, antioxidant functions as well as secondary metabolite pathways. In particular, our metabolite profiling analysis showed that tryptophan-derived metabolites, tryptamine, serotonin, coumaroyl-serotonin and feruloyl-serotonin, are more induced upon infection by the Fgdon+ strain than by the Fgdon- strain. Serotonin was shown to exhibit a slight direct antimicrobial effect against Fg.ConclusionOur results show that Bd exhibits defense hallmarks similar to those already identified in cereal crops. While the fungus uses DON as a virulence factor, the host plant preferentially induces detoxification and the phenylpropanoid and phenolamide pathways as resistance mechanisms. Together with its amenability in laboratory conditions, this makes Bd a very good model to study cereal resistance mechanisms towards the major disease FHB.


Journal of Molecular Evolution | 2008

Genome-Wide Analysis of the Fusarium oxysporum mimp Family of MITEs and Mobilization of Both Native and De Novo Created mimps

Mara Bergemann; Olivier Lespinet; Sarrah Ben M’Barek; Marie-Josée Daboussi; Marie Dufresne

We have performed a genome-wide analysis of the mimp family of miniature inverted-repeat transposable elements, taking advantage of the recent release of the F. oxysporum genome sequence. Using different approaches, we detected 103 mimp elements, corresponding to 75 nonredundant copies, half of which are located on a single small chromosome. Phylogenetic analysis identified at least six subfamilies, all remarkably homogeneous in size and sequence. Based on high sequence identity in the terminal inverted repeats (TIRs), mimp elements were connected to different impala members. To gain insights into the mechanisms at the origin and amplification of mimps, we studied the potential of impala to cross-mobilize different mimps, native but also created de novo by inserting a short DNA segment between two TIRs. Our results show that TIR sequences are the main requirement for mobilization but that additional parameters in the internal region are likely to influence transposition efficiency. Finally, we show that integration site preference of native versus newly transposed mimps greatly varies in the host genomes used in this study.

Collaboration


Dive into the Marie Dufresne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cees Waalwijk

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

G.H.J. Kema

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Gert H. J. Kema

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge