Marie Dutreix
Curie Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie Dutreix.
Clinical Cancer Research | 2009
Maria Quanz; Nathalie Berthault; Christophe Roulin; Maryline Roy; Aurélie Herbette; Céline Agrario; Christophe Alberti; Véronique Josserand; Jean-Luc Coll; Xavier Sastre-Garau; Jean-Marc Cosset; Lionel Larue; Jian-Sheng Sun; Marie Dutreix
Purpose: Enhanced DNA repair activity is often associated with tumor resistance to radiotherapy. We hypothesized that inhibiting DNA damage repair would sensitize tumors to radiation-induced DNA damage. Experimental Design: A novel strategy for inhibiting DNA repair was tested. We designed small DNA molecules that mimic DNA double-strand breaks (called Dbait) and act by disorganizing damage signaling and DNA repair. We analyzed the effects of Dbait in cultured cells and on xenografted tumors growth and performed preliminary studies of their mechanism(s) of action. Results: The selected Dbait molecules activate H2AX phosphorylation in cell culture and in xenografted tumors. In vitro, this activation correlates with the reduction of Nijmegen breakage syndrome 1 and p53-binding protein 1 repair foci formation after irradiation. Cells are sensitized to irradiation and do not efficiently repair DNA damage. In vivo, Dbait induces regression of radioresistant head and neck squamous cell carcinoma (Hep2) and melanoma (SK28 and LU1205) tumors. The combination of Dbait32Hc treatment and fractionated radiotherapy significantly enhanced the therapeutic effect. Tumor growth control by Dbait molecules depended directly on the dose and was observed with various irradiation protocols. The induction of H2AX phosphorylation in tumors treated with Dbait suggests that it acts in vivo through the induction of “false” DNA damage signaling and repair inhibition. Conclusions: These data validate the concept of introducing small DNA molecules, which mimic DNA damage, to trigger “false” signaling of DNA damage and impair DNA repair of damaged chromosomes. This new strategy could provide a new method for enhancing radiotherapy efficiency in radioresistant tumors.
Small | 2014
Imen Miladi; Christophe Alric; Sandrine Dufort; Pierre Mowat; Aurélie Dutour; Céline A. Mandon; Gautier Laurent; Elke Bräuer-Krisch; Nirmitha I. Herath; Jean-Luc Coll; Marie Dutreix; François Lux; Rana Bazzi; Claire Billotey; Marc Janier; Pascal Perriat; Géraldine Le Duc; Stéphane Roux; Olivier Tillement
Owing to the high atomic number (Z) of gold element, the gold nanoparticles appear as very promising radiosensitizing agents. This character can be exploited for improving the selectivity of radiotherapy. However, such an improvement is possible only if irradiation is performed when the gold content is high in the tumor and low in the surrounding healthy tissue. As a result, the beneficial action of irradiation (the eradication of the tumor) should occur while the deleterious side effects of radiotherapy should be limited by sparing the healthy tissue. The location of the radiosensitizers is therefore required to initiate the radiotherapy. Designing gold nanoparticles for monitoring their distribution by magnetic resonance imaging (MRI) is an asset due to the high resolution of MRI which permits the accurate location of particles and therefore the determination of the optimal time for the irradiation. We recently demonstrated that ultrasmall gold nanoparticles coated by gadolinium chelates (Au@DTDTPA-Gd) can be followed up by MRI after intravenous injection. Herein, Au@DTDTPA and Au@DTDTPA-Gd were prepared in order to evaluate their potential for radiosensitization. Comet assays and in vivo experiments suggest that these particles appear well suited for improving the selectivity of the radiotherapy. The dose which is used for inducing similar levels of DNA alteration is divided by two when cells are incubated with the gold nanoparticles prior to the irradiation. Moreover, the increase in the lifespan of tumor bearing rats is more important when the irradiation is performed after the injection of the gold nanoparticles. In the case of treatment of rats with a brain tumor (9L gliosarcoma, a radio-resistant tumor in a radiosensitive organ), the delay between the intravenous injection and the irradiation was determined by MRI.
PLOS ONE | 2009
Maria Quanz; Danielle Chassoux; Nathalie Berthault; Céline Agrario; Jian-Sheng Sun; Marie Dutreix
Cellular response to DNA damage involves the coordinated activation of cell cycle checkpoints and DNA repair. The early steps of DNA damage recognition and signaling in mammalian cells are not yet fully understood. To investigate the regulation of the DNA damage response (DDR), we designed short and stabilized double stranded DNA molecules (Dbait) mimicking double-strand breaks. We compared the response induced by these molecules to the response induced by ionizing radiation. We show that stable 32-bp long Dbait, induce pan-nuclear phosphorylation of DDR components such as H2AX, Rpa32, Chk1, Chk2, Nbs1 and p53 in various cell lines. However, individual cell analyses reveal that differences exist in the cellular responses to Dbait compared to irradiation. Responses to Dbait: (i) are dependent only on DNA-PK kinase activity and not on ATM, (ii) result in a phosphorylation signal lasting several days and (iii) are distributed in the treated population in an “all-or-none” pattern, in a Dbait-concentration threshold dependant manner. Moreover, despite extensive phosphorylation of the DNA-PK downstream targets, Dbait treated cells continue to proliferate without showing cell cycle delay or apoptosis. Dbait treatment prior to irradiation impaired foci formation of Nbs1, 53BP1 and Rad51 at DNA damage sites and inhibited non-homologous end joining as well as homologous recombination. Together, our results suggest that the hyperactivation of DNA-PK is insufficient for complete execution of the DDR but induces a “false” DNA damage signaling that disorganizes the DNA repair system.
Journal of Biological Chemistry | 2012
Maria Quanz; Aurélie Herbette; Mano Sayarath; Leanne De Koning; Thierry Dubois; Jian-Sheng Sun; Marie Dutreix
Background: DNA damage triggers a complex signaling cascade that remains incompletely understood. Results: The essential chaperone Hsp90α is phosphorylated by DNA damage signaling kinases and accumulates at DNA damage sites. Conclusion: Hsp90α is directly involved in DNA repair. Significance: Our results provide an explanation for the radiosensitizing effect of Hsp90 inhibitors and identify phosphorylated Hsp90α as a potential biomarker for genetic instability. DNA damage triggers a complex signaling cascade involving a multitude of phosphorylation events. We found that the threonine 7 (Thr-7) residue of heat shock protein 90α (Hsp90α) was phosphorylated immediately after DNA damage. The phosphorylated Hsp90α then accumulated at sites of DNA double strand breaks and formed repair foci with slow kinetics, matching the repair kinetics of complex DNA damage. The phosphorylation of Hsp90α was dependent on phosphatidylinositol 3-kinase-like kinases, including the DNA-dependent protein kinase (DNA-PK) in particular. DNA-PK plays an essential role in the repair of DNA double strand breaks by nonhomologous end-joining and in the signaling of DNA damage. It is also present in the cytoplasm of the cell and has been suggested to play a role in cytoplasmic signaling pathways. Using stabilized double-stranded DNA molecules to activate DNA-PK, we showed that an active DNA-PK complex could be assembled in the cytoplasm, resulting in phosphorylation of the cytoplasmic pool of Hsp90α. In vivo, reverse phase protein array data for tumors revealed that basal levels of Thr-7-phosphorylated Hsp90α were correlated with phosphorylated histone H2AX levels. The Thr-7 phosphorylation of the ubiquitously produced and secreted Hsp90α may therefore serve as a surrogate biomarker of DNA damage. These findings shed light on the interplay between central DNA repair enzymes and an essential molecular chaperone.
The EMBO Journal | 2006
Renaud Fulconis; Judith Miné; Aurélien Bancaud; Marie Dutreix; Jean-Louis Viovy
The mechanisms of RecA‐mediated three‐strand homologous recombination are investigated at the single‐molecule level, using magnetic tweezers. Probing the mechanical response of DNA molecules and nucleoprotein filaments in tension and in torsion allows a monitoring of the progression of the exchange in real time, both from the point of view of the RecA‐bound single‐stranded DNA and from that of the naked double‐stranded DNA (dsDNA). We show that strand exchange is able to generate torsion even along a molecule with freely rotating ends. RecA readily depolymerizes during the reaction, a process presenting numerous advantages for the cells ‘protein economy’ and for the management of topological constraints. Invasion of an untwisted dsDNA by a nucleoprotein filament leads to an exchanged duplex that remains topologically linked to the exchanged single strand, suggesting multiple initiations of strand exchange on the same molecule. Overall, our results seem to support several important assumptions of the monomer redistribution model.
Yeast | 2005
Christine Sacerdot; Géraldine Mercier; Anne-Laure Todeschini; Marie Dutreix; Mathias Springer; Pascale Lesage
Ty1 elements, LTR‐retrotransposons of Saccharomyces cerevisiae, are known to be activated by genetic and environmental stress. Several DNA‐damaging agents have been shown to increase both Ty1 transcription and retrotransposition. To explore further the relationship between Ty1 mobility and DNA damage, we have studied the impact of ionizing radiation at different steps of the Ty1 life cycle. We have shown that Ty1 transposition is strongly activated by γ‐irradiation and we have analysed its effect on Ty1 transcription, TyA1 protein and Ty1 cDNA levels. The activation of transposition rises with increasing doses of γ‐rays and is stronger for Ty1 elements than for the related Ty2 elements. Ty1 RNA levels are markedly elevated upon irradiation; however, no significant increase of TyA1 protein was detected as measured by TYA1–lacZ fusions and by Western blot. A moderate increase in Ty1 cDNA levels was also observed, indicating that ionizing radiation can induce the synthesis of Ty1 cDNA. In diploid cells and ste12 mutants, where both Ty1 transcription and transposition are repressed, γ‐irradiation is able to activate Ty1 transposition and increases Ty1 RNA levels. These results suggest the existence of a specific regulatory pathway involved in Ty1 response to the γ‐irradiation that would be independent of Ste12 and mating‐type factors. Our findings also indicate that ionizing radiation acts on several steps of the Ty1 life cycle. Copyright
BMC Bioinformatics | 2007
Pierre Geurts; Nizar Touleimat; Marie Dutreix; Florence d'Alché-Buc
BackgroundElucidating biological networks between proteins appears nowadays as one of the most important challenges in systems biology. Computational approaches to this problem are important to complement high-throughput technologies and to help biologists in designing new experiments. In this work, we focus on the completion of a biological network from various sources of experimental data.ResultsWe propose a new machine learning approach for the supervised inference of biological networks, which is based on a kernelization of the output space of regression trees. It inherits several features of tree-based algorithms such as interpretability, robustness to irrelevant variables, and input scalability. We applied this method to the inference of two kinds of networks in the yeast S. cerevisiae: a protein-protein interaction network and an enzyme network. In both cases, we obtained results competitive with existing approaches. We also show that our method provides relevant insights on input data regarding their potential relationship with the existence of interactions. Furthermore, we confirm the biological validity of our predictions in the context of an analysis of gene expression data.ConclusionOutput kernel tree based methods provide an efficient tool for the inference of biological networks from experimental data. Their simplicity and interpretability should make them of great value for biologists.
Mutation Research-reviews in Mutation Research | 2010
Marie Dutreix; Jean-Marc Cosset; J.-S. Sun
Approximately half of all cancer patients are treated with radiation therapy. However, some tumor cells can escape the lethal effects of irradiation by hypoxia, deregulation of the cell cycle or apoptosis or by increasing their ability to repair the DNA damage induced, resulting in recurrence of disease. In order to overcome these resistance mechanisms, various strategies have been developed. Over the last decade, extensive progress in human genomics and genetic tools has been made. Several methods using DNA or RNA molecules have been developed to target angiogenesis or other cellular functions in order to restore sensitivity to irradiation. In this review, we focus on five classes of nucleic acid-based approaches, (i) gene transfer by recombinant plasmid or virus, (ii) immune-stimulating oligonucleotides, (iii) antisense oligonucleotides, (iv) siRNA and shRNA, and (v) siDNA (signal interfering DNA), which target specific proteins or pathways involved in radioresistance. We review the results of the preclinical studies and clinical trials conducted to date by combining nucleic acid-based molecular therapy and radiotherapy.
Cancer Gene Therapy | 2011
Nathalie Berthault; Benoit Maury; Céline Agrario; Aurélie Herbette; Jian-Sheng Sun; Nadine Peyriéras; Marie Dutreix
Introducing small DNA molecules (Dbait) impairs the repair of damaged chromosomes and provides a new method for enhancing the efficiency of radiotherapy in radio-resistant tumors. The radiosensitizing activity is dependent upon the efficient delivery of Dbait molecules into the tumor cells. Different strategies have been compared, to improve this key step. We developed a pipeline of assays to select the most efficient nanoparticles and administration protocols before preclinical assays: (i) molecular analyses of complexes formed with Dbait molecules, (ii) cellular tests for Dbait uptake and activity, (iii) live zebrafish embryo confocal microscopy monitoring for in vivo distribution and biological activity of the nanoparticles and (iv) tumor growth and survival measurement on mice with xenografted tumors. Two classes of nanoparticles were compared, polycationic polymers with linear or branched polyethylenimine (PEI) and covalently attached cholesterol (coDbait). The most efficient Dbait transfection was observed with linear PEI complexes, in vitro and in vivo. Doses of coDbait ten-fold higher than PEI/Dbait nanoparticles, and pretreatment with chloroquine, were required to obtain the same antitumoral effect on xenografted melanoma. However, with a 22-fold lower ‘efficacy dose/toxicity dose’ ratio as compared with Dbait/PEI, coDbait was selected for clinical trials.
Nucleic Acids Research | 2013
Amélie Croset; Fabrice P. Cordelières; Nathalie Berthault; Cyril Buhler; Jian-Sheng Sun; Maria Quanz; Marie Dutreix
One of the major early steps of repair is the recruitment of repair proteins at the damage site, and this is coordinated by a cascade of modifications controlled by phosphatidylinositol 3-kinase-related kinases and/or poly (ADP-ribose) polymerase (PARP). We used short interfering DNA molecules mimicking double-strand breaks (called Dbait) or single-strand breaks (called Pbait) to promote DNA-dependent protein kinase (DNA-PK) and PARP activation. Dbait bound and induced both PARP and DNA-PK activities, whereas Pbait acts only on PARP. Therefore, comparative study of the two molecules allows analysis of the respective roles of the two signaling pathways: both recruit proteins involved in single-strand break repair (PARP, XRCC1 and PCNA) and prevent their recruitment at chromosomal damage. Dbait, but not Pbait, also inhibits recruitment of proteins involved in double-strand break repair (53BP1, NBS1, RAD51 and DNA-PK). By these ways, Pbait and Dbait disorganize DNA repair, thereby sensitizing cells to various treatments. Single-strand breaks repair inhibition depends on direct trapping of the main proteins on both molecules. Double-strand breaks repair inhibition may be indirect, resulting from the phosphorylation of double-strand breaks repair proteins and chromatin targets by activated DNA-PK. The DNA repair inhibition by both molecules is confirmed by their synthetic lethality with BRCA mutations.