Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Eve Laramée is active.

Publication


Featured researches published by Marie-Eve Laramée.


European Journal of Neuroscience | 2012

Cortical and subcortical projections to primary visual cortex in anophthalmic, enucleated and sighted mice

Valérie Charbonneau; Marie-Eve Laramée; Virginie Boucher; Gilles Bronchti; Denis Boire

The purpose of this study was to identify and compare the afferent projections to the primary visual cortex in intact and enucleated C57BL/6 mice and in ZRDCT/An anophthalmic mice. Early loss of sensory‐driven activity in blind subjects can lead to activations of the primary visual cortex by haptic or auditory stimuli. This intermodal activation following the onset of blindness is believed to arise through either unmasking of already present cortical connections, sprouting of novel cortical connections or enhancement of intermodal cortical connections. Studies in humans have similarly demonstrated heteromodal activation of visual cortex following relatively short periods of blindfolding. This suggests that the primary visual cortex in normal sighted subjects receives afferents, either from multisensory association cortices or from primary sensory cortices dedicated to other modalities. Here cortical afferents to the primary visual cortex were investigated to determine whether the visual cortex receives sensory input from other modalities, and whether differences exist in the quantity and/or the structure of projections found in sighted, enucleated and anophthalmic mice. This study demonstrates extensive direct connections between the primary visual cortex and auditory and somatosensory areas, as well as with motor and association cortices in all three animal groups. This suggests that information from different sensory modalities can be integrated at early cortical stages and that visual cortex activations following visual deprivations can partly be explained by already present intermodal corticocortical connections.


European Journal of Neuroscience | 2011

Indirect pathway between the primary auditory and visual cortices through layer V pyramidal neurons in V2L in mouse and the effects of bilateral enucleation

Marie-Eve Laramée; Tohru Kurotani; Kathleen S. Rockland; Gilles Bronchti; Denis Boire

Visual cortical areas are activated by auditory stimuli in blind mice. Direct heteromodal cortical connections have been shown between the primary auditory cortex (A1) and primary visual cortex (V1), and between A1 and secondary visual cortex (V2). Auditory afferents to V2 terminate in close proximity to neurons that project to V1, and potentially constitute an effective indirect pathway between A1 and V1. In this study, we injected a retrograde adenoviral vector that expresses enhanced green fluorescent protein under a synapsin promotor in V1 and biotinylated dextran amine as an anterograde tracer in A1 to determine: (i) whether A1 axon terminals establish synaptic contacts onto the lateral part of V2 (V2L) neurons that project to V1; and (ii) if this indirect cortical pathway is altered by a neonatal enucleation in mice. Complete dendritic arbors of layer V pyramidal neurons were reconstructed in 3D, and putative contacts between pre‐synaptic auditory inputs and postsynaptic visual neurons were analysed using a laser‐scanning confocal microscope. Putative synaptic contacts were classified as high‐confidence and low‐confidence contacts, and charted onto dendritic trees. As all reconstructed layer V pyramidal neurons received auditory inputs by these criteria, we conclude that V2L acts as an important relay between A1 and V1. Auditory inputs are preferentially located onto lower branch order dendrites in enucleated mice. Also, V2L neurons are subject to morphological reorganizations in both apical and basal dendrites after the loss of vision. The A1–V2L–V1 pathway could be involved in multisensory processing and contribute to the auditory activation of the occipital cortex in the blind rodent.


Neuroscience Letters | 2008

Subcortical auditory input to the primary visual cortex in anophthalmic mice

Nicole Chabot; Valérie Charbonneau; Marie-Eve Laramée; R. Tremblay; Denis Boire; Gilles Bronchti

Anatomical and imaging studies show ample evidence for auditory activation of the visual cortex following early onset of blindness in both humans and animal models. Anatomical studies in animal models of early blindness clearly show intermodal pathways through which auditory information can reach the primary visual cortex. There is clear evidence for intermodal corticocortical pathways linking auditory and visual cortex and also novel connections between the inferior colliculus and the visual thalamus. A recent publication [L.K. Laemle, N.L. Strominger, D.O. Carpenter, Cross-modal innervation of primary visual cortex by auditory fibers in congenitally anophthalmic mice, Neurosci. Lett. 396 (2006) 108-112] suggested the presence of a direct reciprocal connection between the inferior colliculus and the primary visual cortex (V1) in congenitally anophthalmic ZRDCT/An mice. This implies that this mutant mouse would be the only known vertebrate having a direct tectal connection with a primary sensory cortex. The presence of this peculiar pathway was reinvestigated in the ZRDCT/An mouse with highly sensitive neuronal tracers. We found the connections normally described in the ZRDCT/An mouse between: (i) the inferior colliculus and the dorsal lateral geniculate nucleus, (ii) V1 and the superior colliculus, (iii) the lateral posterior nucleus and V1 and between (iv) the inferior colliculus and the medial geniculate nucleus. We also show unambiguously that the auditory subcortical structures do not connect the primary visual cortex in the anophthalmic mouse. In particular, we find no evidence of a direct projection from the auditory mesencephalon to the cortex in this animal model of blindness.


Cerebral Cortex | 2013

Principal Component and Cluster Analysis of Layer V Pyramidal Cells in Visual and Non-Visual Cortical Areas Projecting to the Primary Visual Cortex of the Mouse

Marie-Eve Laramée; Kathleen S. Rockland; Stéphanie Prince; Gilles Bronchti; Denis Boire

The long-distance corticocortical connections between visual and nonvisual sensory areas that arise from pyramidal neurons located within layer V can be considered as a subpopulation of feedback connections. The purpose of the present study is to determine if layer V pyramidal neurons from visual and nonvisual sensory cortical areas that project onto the visual cortex (V1) constitute a homogeneous population of cells. Additionally, we ask whether dendritic arborization relates to the target, the sensory modality, the hierarchical level, or laterality of the source cortical area. Complete 3D reconstructions of dendritic arbors of retrogradely labeled layer V pyramidal neurons were performed for neurons of the primary auditory (A1) and somatosensory (S1) cortices and from the lateral (V2L) and medial (V2M) parts of the secondary visual cortices of both hemispheres. The morphological parameters extracted from these reconstructions were subjected to principal component analysis (PCA) and cluster analysis. The PCA showed that neurons are distributed within a continuous range of morphologies and do not form discrete groups. Nevertheless, the cluster analysis defines neuronal groups that share similar features. Each cortical area includes neurons belonging to several clusters. We suggest that layer V feedback connections within a single cortical area comprise several cell types.


Frontiers in Neural Circuits | 2015

Visual cortical areas of the mouse: comparison of parcellation and network structure with primates.

Marie-Eve Laramée; Denis Boire

Brains have evolved to optimize sensory processing. In primates, complex cognitive tasks must be executed and evolution led to the development of large brains with many cortical areas. Rodents do not accomplish cognitive tasks of the same level of complexity as primates and remain with small brains both in relative and absolute terms. But is a small brain necessarily a simple brain? In this review, several aspects of the visual cortical networks have been compared between rodents and primates. The visual system has been used as a model to evaluate the level of complexity of the cortical circuits at the anatomical and functional levels. The evolutionary constraints are first presented in order to appreciate the rules for the development of the brain and its underlying circuits. The organization of sensory pathways, with their parallel and cross-modal circuits, is also examined. Other features of brain networks, often considered as imposing constraints on the development of underlying circuitry, are also discussed and their effect on the complexity of the mouse and primate brain are inspected. In this review, we discuss the common features of cortical circuits in mice and primates and see how these can be useful in understanding visual processing in these animals.


The Journal of Comparative Neurology | 2015

Evaluation of the expression pattern of rAAV2/1, 2/5, 2/7, 2/8, and 2/9 serotypes with different promoters in the mouse visual cortex.

Isabelle Scheyltjens; Marie-Eve Laramée; Chris Van den Haute; Rik Gijsbers; Zeger Debyser; Veerle Baekelandt; Samme Vreysen; Lutgarde Arckens

This study compared the expression pattern, laminar distribution, and cell specificity of several rAAV serotypes (2/1, 2/5, 2/7, 2/8, and 2/9) injected in the primary visual cortex (V1) of adult C57Bl/6J mice. In order to obtain specific expression in certain neuron subtypes, different promoter sequences were evaluated for excitatory cell specificity: a universal cytomegalovirus (CMV) promoter, and two versions of the excitatory neuron‐specific Ca2+/calmodulin‐dependent kinase subunit α (CaMKIIα) promoter, CaMKIIα 0.4 and CaMKIIα 1.3. The spatial distribution as well as the cell type specificity was immunohistochemically verified. Depending on the rAAV serotype used, the transduced volume expressing reporter protein differed substantially (rAAV2/5 ≫ 2/7 ≈ 2/9 ≈ 2/8 ≫ 2/1). Excitatory neuron‐specific targeting was promoter‐dependent, with a surprising difference between the 1.3 kb and 0.4 kb CaMKIIα promoters. While CaMKIIα 1.3 and CMV carrying vectors were comparable, with 78% of the transduced neurons being excitatory for CMV and 82% for CaMKIIα 1.3, the shorter CaMKIIα 0.4 version resulted in 95% excitatory specificity. This study therefore puts forward the CaMKIIα 0.4 promoter as the best choice to target excitatory neurons with rAAVs. Together, these results can be used as an aid to select the most optimal vector system to deliver transgenes into specific rodent neocortical circuits, allowing further elucidation of their functions. J. Comp. Neurol. 523:2019–2042, 2015.


Neurophotonics | 2015

Serotype-dependent transduction efficiencies of recombinant adeno-associated viral vectors in monkey neocortex

Annelies Gerits; Pascaline Vancraeyenest; Samme Vreysen; Marie-Eve Laramée; Annelies Michiels; Rik Gijsbers; Chris Van den Haute; Lieve Moons; Zeger Debyser; Veerle Baekelandt; Lutgarde Arckens; Wim Vanduffel

Abstract. Viral vector-mediated expression of genes (e.g., coding for opsins and designer receptors) has grown increasingly popular. Cell-type specific expression is achieved by altering viral vector tropism through crosspackaging or by cell-specific promoters driving gene expression. Detailed information about transduction properties of most recombinant adeno-associated viral vector (rAAV) serotypes in macaque cortex is gradually becoming available. Here, we compare transduction efficiencies and expression patterns of reporter genes in two macaque neocortical areas employing different rAAV serotypes and promoters. A short version of the calmodulin-kinase-II (CaMKIIα0.4) promoter resulted in reporter gene expression in cortical neurons for all tested rAAVs, albeit with different efficiencies for spread: rAAV2/5>>rAAV2/7>rAAV2/8>rAAV2/9>>rAAV2/1 and proportion of transduced cells: rAAV2/1>rAAV2/5>rAAV2/7=rAAV2/9>rAAV2/8. In contrast to rodent studies, the cytomegalovirus (CMV) promoter appeared least efficient in macaque cortex. The human synapsin-1 promoter preceded by the CMV enhancer (enhSyn1) produced homogeneous reporter gene expression across all layers, while two variants of the CaMKIIα promoter resulted in different laminar transduction patterns and cell specificities. Finally, differences in expression patterns were observed when the same viral vector was injected in two neocortical areas. Our results corroborate previous findings that reporter-gene expression patterns and efficiency of rAAV transduction depend on serotype, promoter, cortical layer, and area.


The Journal of Neuroscience | 2015

Regional Specificity of GABAergic Regulation of Cross-Modal Plasticity in Mouse Visual Cortex after Unilateral Enucleation

Julie Nys; Katrien Smolders; Marie-Eve Laramée; Isabel J.F. Hofman; Tjing-Tjing Hu; Lutgarde Arckens

In adult mice, monocular enucleation (ME) results in an immediate deactivation of the contralateral medial monocular visual cortex. An early restricted reactivation by open eye potentiation is followed by a late overt cross-modal reactivation by whiskers (Van Brussel et al., 2011). In adolescence (P45), extensive recovery of cortical activity after ME fails as a result of suppression or functional immaturity of the cross-modal mechanisms (Nys et al., 2014). Here, we show that dark exposure before ME in adulthood also prevents the late cross-modal reactivation component, thereby converting the outcome of long-term ME into a more P45-like response. Because dark exposure affects GABAergic synaptic transmission in binocular V1 and the plastic immunity observed at P45 is reminiscent of the refractory period for inhibitory plasticity reported by Huang et al. (2010), we molecularly examined whether GABAergic inhibition also regulates ME-induced cross-modal plasticity. Comparison of the adaptation of the medial monocular and binocular cortices to long-term ME or dark exposure or a combinatorial deprivation revealed striking differences. In the medial monocular cortex, cortical inhibition via the GABAA receptor α1 subunit restricts cross-modal plasticity in P45 mice but is relaxed in adults to allow the whisker-mediated reactivation. In line, in vivo pharmacological activation of α1 subunit-containing GABAA receptors in adult ME mice specifically reduces the cross-modal aspect of reactivation. Together with region-specific changes in glutamate acid decarboxylase (GAD) and vesicular GABA transporter expression, these findings put intracortical inhibition forward as an important regulator of the age-, experience-, and cortical region-dependent cross-modal response to unilateral visual deprivation. SIGNIFICANCE STATEMENT In adult mice, vision loss through one eye instantly reduces neuronal activity in the visual cortex. Strengthening of remaining eye inputs in the binocular cortex is followed by cross-modal adaptations in the monocular cortex, in which whiskers become a dominant nonvisual input source to attain extensive cortical reactivation. We show that the cross-modal component does not occur in adolescence because of increased intracortical inhibition, a phenotype that was mimicked in adult enucleated mice when treated with indiplon, a GABAA receptor α1 agonist. The cross-modal versus unimodal responses of the adult monocular and binocular cortices also mirror regional specificity in inhibitory alterations after visual deprivation. Understanding cross-modal plasticity in response to sensory loss is essential to maximize patient susceptibility to sensory prosthetics.


Brain Structure & Function | 2014

Primary visual cortex projections to extrastriate cortices in enucleated and anophthalmic mice.

Marie-Eve Laramée; Gilles Bronchti; Denis Boire

Abstract In the mouse, visual extrastriate areas are located within distinct acallosal zones. It has been proposed that the striate–extrastriate and callosal projections are interdependent. In visually deprived mice, the normal patterns of callosal and striate–extrastriate projections are disrupted. It remains unknown whether visual deprivation affects the topography of V1-extrastriate projections and their relationship with callosal projections. Two anterograde tracers were injected in V1 and multiple retrograde tracer injections were performed in the contralateral hemisphere of intact and enucleated C57BL/6 mice and in ZRDCT/An mice to determine the effects of prenatal and postnatal afferent sensory activity on the topography of V1-extrastriate and callosal projections. Greater topographic anomalies were found in striate–extrastriate projections of anophthalmic than enucleated mice. In enucleated mice, the relationship between striate–extrastriate projections and callosal zones was highly variable. In anophthalmic mice, there was also a greater overlap between these projections. These results suggest that the prenatal afferent sensory activity regulates some aspects of the distribution of V1-extrastriate and callosal projections, in addition to the development of a normal topographic representation in extrastriate areas.


European Journal of Neuroscience | 2016

Retinal lesions induce fast intrinsic cortical plasticity in adult mouse visual system

Katrien Smolders; Samme Vreysen; Marie-Eve Laramée; Annemie Cuyvers; Tjing-Tjing Hu; Leen Van Brussel; Ulf T. Eysel; Julie Nys; Lutgarde Arckens

Neuronal activity plays an important role in the development and structural–functional maintenance of the brain as well as in its life‐long plastic response to changes in sensory stimulation. We characterized the impact of unilateral 15° laser lesions in the temporal lower visual field of the retina, on visually driven neuronal activity in the afferent visual pathway of adult mice using in situ hybridization for the activity reporter gene zif268. In the first days post‐lesion, we detected a discrete zone of reduced zif268 expression in the contralateral hemisphere, spanning the border between the monocular segment of the primary visual cortex (V1) with extrastriate visual area V2M. We could not detect a clear lesion projection zone (LPZ) in areas lateral to V1 whereas medial to V2M, agranular and granular retrosplenial cortex showed decreased zif268 levels over their full extent. All affected areas displayed a return to normal zif268 levels, and this was faster in higher order visual areas than in V1. The lesion did, however, induce a permanent LPZ in the retinorecipient layers of the superior colliculus. We identified a retinotopy‐based intrinsic capacity of adult mouse visual cortex to recover from restricted vision loss, with recovery speed reflecting the areal cortical magnification factor. Our observations predict incomplete visual field representations for areas lateral to V1 vs. lack of retinotopic organization for areas medial to V2M. The validation of this mouse model paves the way for future interrogations of cortical region‐ and cell‐type‐specific contributions to functional recovery, up to microcircuit level.

Collaboration


Dive into the Marie-Eve Laramée's collaboration.

Top Co-Authors

Avatar

Denis Boire

Université du Québec à Trois-Rivières

View shared research outputs
Top Co-Authors

Avatar

Gilles Bronchti

Université du Québec à Trois-Rivières

View shared research outputs
Top Co-Authors

Avatar

Samme Vreysen

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Lut Arckens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Isabelle Scheyltjens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lutgarde Arckens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Veerle Baekelandt

Catholic University of Leuven

View shared research outputs
Top Co-Authors

Avatar

Zeger Debyser

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Valérie Charbonneau

Université du Québec à Trois-Rivières

View shared research outputs
Researchain Logo
Decentralizing Knowledge