Marie-Françoise Bidaut-Véron
François Rabelais University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Françoise Bidaut-Véron.
Journal D Analyse Mathematique | 2001
Marie-Françoise Bidaut-Véron; S. I. Pohozaev
AbstractHere we study the local or global behaviour of the solutions of elliptic inequalities involving quasilinear operators of the type
Communications in Contemporary Mathematics | 2010
Haydar Abdel Hamid; Marie-Françoise Bidaut-Véron
Advanced Nonlinear Studies | 2003
Marie-Françoise Bidaut-Véron
L_{\mathcal{A}^u } = - div\left[ {\mathcal{A}\left( {x,u,\nabla u} \right)} \right] \geqslant \left| x \right|^\sigma u^Q
Advanced Nonlinear Studies | 2006
Marie-Françoise Bidaut-Véron
arXiv: Analysis of PDEs | 2009
Marie-Françoise Bidaut-Véron
or
Journal of Functional Analysis | 2015
Marie-Françoise Bidaut-Véron; Giang Hoang; Quoc-Hung Nguyen; Laurent Veron
Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 1997
Marie-Françoise Bidaut-Véron; Philippe Grillot
\begin{gathered} L_{\mathcal{A}^u } = - div\left[ {\mathcal{A}\left( {x,u,\nabla u} \right)} \right] \geqslant \left| x \right|^\sigma u^S v^R \hfill \\ L_{\mathcal{B}^u } = - div\left[ {\mathcal{B}\left( {x,u,\nabla u} \right)} \right] \geqslant \left| x \right|^b u^Q u^T \hfill \\ \end{gathered}
Journal of the European Mathematical Society | 2015
Marie-Françoise Bidaut-Véron; Quoc-Hung Nguyen
Advanced Nonlinear Studies | 2015
Marie-Françoise Bidaut-Véron; Nguyen Anh Dao
. We give integral estimates and nonexistence results. They depend on properties of the supersolutions of the equationsLAu=0,LBv=0, which suppose weak coercivity conditions. Under stronger conditions, we give pointwise estimates in case of equalities, using Harnack properties.
Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze | 2016
Marie-Françoise Bidaut-Véron; Quoc-Hung Nguyen
We establish a precise connection between two elliptic quasilinear problems with Dirichlet data in a bounded domain of