Marie H. Hanigan
University of Oklahoma Health Sciences Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie H. Hanigan.
Cancer Research | 2008
Tongzhong Ju; Grainger S. Lanneau; Tripti Gautam; Yingchun Wang; Baoyun Xia; Sean R. Stowell; Margaret T. Willard; Wenyi Wang; Jonathan Y. Xia; Rosemary E. Zuna; Zoltan Laszik; Doris M. Benbrook; Marie H. Hanigan; Richard D. Cummings
Neoplastic lesions typically express specific carbohydrate antigens on glycolipids, mucins, and other glycoproteins. Such antigens are often under epigenetic control and are subject to reversion and loss upon therapeutic selective pressure. We report here that two of the most common tumor-associated carbohydrate antigens, Tn and sialyl Tn (STn), result from somatic mutations in the gene Cosmc that encodes a molecular chaperone required for formation of the active T-synthase. Diverse neoplastic lesions, including colon cancer and melanoma-derived cells lines, expressed both Tn and STn antigen due to loss-of-function mutations in Cosmc. In addition, two human cervical cancer specimens that showed expression of the Tn/STn antigens were also found to have mutations in Cosmc and loss of heterozygosity for the cross-linked Cosmc locus. This is the first example of somatic mutations in multiple types of cancers that cause global alterations in cell surface carbohydrate antigen expression.
American Journal of Pathology | 2001
Marie H. Hanigan; Ernest D. Lykissa; Danyelle M. Townsend; Ching Nan Ou; Roberto Barrios; Michael W. Lieberman
We have proposed that the nephrotoxicity of cisplatin, a widely used chemotherapy drug, is the result of the binding of cisplatin to glutathione and the subsequent metabolism of the cisplatin-glutathione complex via a gamma-glutamyl transpeptidase (GGT)-dependent pathway in the proximal tubules. To test the hypothesis that GGT activity is essential for the nephrotoxicity of cisplatin, the effects of cisplatin were examined in wild-type and GGT-deficient mice. Mice were treated with 15 mg cisplatin/kg. Five days after treatment, renal histopathology, blood urea nitrogen levels, serum creatinine, platinum excretion, and platinum accumulation in the kidney were examined. Half the mice were supplemented with N-acetylcysteine, which has been shown to correct low levels of tissue glutathione in GGT-deficient mice. The data show that cisplatin was nephrotoxic in wild-type mice but not in GGT-deficient mice. The wild-type mice, with and without N-acetylcysteine supplementation, had significantly elevated levels of blood urea nitrogen, serum creatinine, and renal tubular necrosis. There was no evidence of nephrotoxicity in the GGT-deficient mice regardless of N-acetyl cysteine supplementation. No differences in platinum excretion were seen comparing wild-type and GGT-deficient mice, nor was there any significant difference in renal platinum accumulation. These data suggest that renal cisplatin toxicity is dependent on GGT activity, and is not correlated with uptake. The results support our hypothesis that the nephrotoxicity of cisplatin is the result of the metabolism of the drug through a GGT-dependent pathway.
Biomedicine & Pharmacotherapy | 2009
Danyelle M. Townsend; Kenneth D. Tew; Lin He; Jarrod B. King; Marie H. Hanigan
One of the dose-limiting toxicities of cisplatin is nephrotoxicity. Renal toxicity is localized to quiescent proximal tubule cells, where the formation of DNA-adducts cannot account for the dose-limiting toxicity. Our earlier results have shown that a glutathione conjugate of cisplatin is metabolized to a nephrotoxicant via gamma-glutamyl transpeptidase (GGT) and a cysteine S-conjugate beta-lyase. The present study was designed to evaluate the potential role of glutathione S-transferase Pi (GSTP) in the initial steps of the bioactivation of cisplatin. Wild-type mice and mice deficient in both murine GSTP genes (GstP1/P2) were treated with cisplatin. Toxicity in both male and female mice was evaluated 5 days after treatment and renal damage was most severe in wild-type male mice. Wild-type males have approximately 10-fold higher levels of GSTP expression in the liver than females, suggesting that hepatic GSTP in the wild-type males contributed to the formation of the nephrotoxic platinum-glutathione conjugate. In GstP1/P2 null mice the gender difference in toxicity was eliminated. Our data show that GSTP expression is a determinant in cisplatin-induced nephrotoxicity and its levels contribute to sex-dependent differences.
Journal of Biological Chemistry | 2009
Jarrod B. King; Matthew B. West; Paul F. Cook; Marie H. Hanigan
Expression of γ-glutamyl transpeptidase (GGT) in tumors contributes to resistance to radiation and chemotherapy. GGT is inhibited by glutamine analogues that compete with the substrate for the γ-glutamyl binding site. However, the glutamine analogues that have been evaluated in clinical trials are too toxic for use in humans. We have used high throughput screening to evaluate small molecules for their ability to inhibit GGT and have identified a novel class of inhibitors that are not glutamine analogues. These compounds are uncompetitive inhibitors, binding the γ-glutamyl enzyme complex. OU749, the lead compound, has an intrinsic Ki of 17.6 μm. It is a competitive inhibitor of the acceptor glycyl-glycine, which indicates that OU749 occupies the acceptor site while binding to the γ-glutamyl substrate complex. OU749 is more than 150-fold less toxic than the GGT inhibitor acivicin toward dividing cells. Inhibition of GGT by OU749 is species-specific, inhibiting GGT isolated from human kidney with 7–10-fold greater potency than GGT isolated from rat or mouse kidney. OU749 does not inhibit GGT from pig cells. Human GGT expressed in mouse fibroblasts is inhibited by OU749 similarly to GGT from human cells, which indicates that the species specificity is determined by differences in the primary structure of the protein rather than species-specific, post-translational modifications. These studies have identified a novel class of inhibitors of GGT, providing the basis for further development of a new group of therapeutics that inhibit GGT by a mechanism distinct from the toxic glutamine analogues.
Advances in Cancer Research | 2014
Marie H. Hanigan
The expression of gamma-glutamyl transpeptidase (GGT) is essential to maintaining cysteine levels in the body. GGT is a cell surface enzyme that hydrolyzes the gamma-glutamyl bond of extracellular reduced and oxidized glutathione, initiating their cleavage into glutamate, cysteine (cystine), and glycine. GGT is normally expressed on the apical surface of ducts and glands, salvaging the amino acids from glutathione in the ductal fluids. GGT in tumors is expressed over the entire cell membrane and provides tumors with access to additional cysteine and cystine from reduced and oxidized glutathione in the blood and interstitial fluid. Cysteine is rate-limiting for glutathione synthesis in cells under oxidative stress. The induction of GGT is observed in tumors with elevated levels of intracellular glutathione. Studies in models of hepatocarcinogenesis show that GGT expression in foci of preneoplastic hepatocytes provides a selective advantage to the cells during tumor promotion with agents that deplete intracellular glutathione. Similarly, expression of GGT in tumors enables cells to maintain elevated levels of intracellular glutathione and to rapidly replenish glutathione during treatment with prooxidant anticancer therapy. In the clinic, the expression of GGT in tumors is correlated with drug resistance. The inhibitors of GGT block GGT-positive tumors from accessing the cysteine in extracellular glutathione. They also inhibit GGT activity in the kidney, which results in the excretion of GSH in the urine and a rapid decrease in blood cysteine levels, leading to depletion of intracellular GSH in both GGT-positive and GGT-negative tumors. GGT inhibitors are being developed for clinical use to sensitize tumors to chemotherapy.
Journal of Biological Chemistry | 2010
Matthew B. West; Zaneer M. Segu; Christa L. Feasley; Pilsoo Kang; Iveta Klouckova; Chenglong Li; Milos V. Novotny; Christopher M. West; Yehia Mechref; Marie H. Hanigan
The cell surface glycoprotein γ-glutamyl transpeptidase (GGT) was isolated from healthy human kidney and liver to characterize its glycosylation in normal human tissue in vivo. GGT is expressed by a single cell type in the kidney. The spectrum of N-glycans released from kidney GGT constituted a subset of the N-glycans identified from renal membrane glycoproteins. Recent advances in mass spectrometry enabled us to identify the microheterogeneity and relative abundance of glycans on specific glycopeptides and revealed a broader spectrum of glycans than was observed among glycans enzymatically released from isolated GGT. A total of 36 glycan compositions, with 40 unique structures, were identified by site-specific glycan analysis. Up to 15 different glycans were observed at a single site, with site-specific variation in glycan composition. N-Glycans released from liver membrane glycoproteins included many glycans also identified in the kidney. However, analysis of hepatic GGT glycopeptides revealed 11 glycan compositions, with 12 unique structures, none of which were observed on kidney GGT. No variation in glycosylation was observed among multiple kidney and liver donors. Two glycosylation sites on renal GGT were modified exclusively by neutral glycans. In silico modeling of GGT predicts that these two glycans are located in clefts on the surface of the protein facing the cell membrane, and their synthesis may be subject to steric constraints. This is the first analysis at the level of individual glycopeptides of a human glycoprotein produced by two different tissues in vivo and provides novel insights into tissue-specific and site-specific glycosylation in normal human tissues.
Journal of Biological Chemistry | 2013
Matthew West; Yunyu Chen; Stephanie Wickham; Ann Heroux; Kyle Cahill; Marie H. Hanigan; Blaine H. M. Mooers
Background: Human γ-glutamyltranspeptidase 1 (hGGT1) is a key enzyme in cysteine metabolism and several diseases. Results: We obtained the high resolution crystal structure of hGGT1. Conclusion: The structure reveals the molecular basis for differences between the human and bacterial enzymes in autoprocessing and catalytic activity. Significance: The structure provides a template for the structure-based design of therapeutic inhibitors of hGGT1. The enzyme γ-glutamyltranspeptidase 1 (GGT1) is a conserved member of the N-terminal nucleophile hydrolase family that cleaves the γ-glutamyl bond of glutathione and other γ-glutamyl compounds. In animals, GGT1 is expressed on the surface of the cell and has critical roles in maintaining cysteine levels in the body and regulating intracellular redox status. Expression of GGT1 has been implicated as a potentiator of asthma, cardiovascular disease, and cancer. The rational design of effective inhibitors of human GGT1 (hGGT1) has been delayed by the lack of a reliable structural model. The available crystal structures of several bacterial GGTs have been of limited use due to differences in the catalytic behavior of bacterial and mammalian GGTs. We report the high resolution (1.67 Å) crystal structure of glutamate-bound hGGT1, the first of any eukaryotic GGT. Comparisons of the active site architecture of hGGT1 with those of its bacterial orthologs highlight key differences in the residues responsible for substrate binding, including a bimodal switch in the orientation of the catalytic nucleophile (Thr-381) that is unique to the human enzyme. Compared with several bacterial counterparts, the lid loop in the crystal structure of hGGT1 adopts an open conformation that allows greater access to the active site. The hGGT1 structure also revealed tightly bound chlorides near the catalytic residue that may contribute to catalytic activity. These are absent in the bacterial GGTs. These differences between bacterial and mammalian GGTs and the new structural data will accelerate the development of new therapies for GGT1-dependent diseases.
Analytical Biochemistry | 2011
Stephanie Wickham; Matthew B. West; Paul F. Cook; Marie H. Hanigan
Gamma-glutamyl compounds include antioxidants, inflammatory molecules, drug metabolites, and neuroactive compounds. Two cell surface enzymes that metabolize gamma-glutamyl compounds have been identified: gamma-glutamyl transpeptidase (GGT1) and gamma-glutamyl leukotrienase (GGT5). There is controversy in the literature regarding the substrate specificity of these enzymes. To address this issue, we have developed a method for comprehensive kinetic analysis of compounds as substrates for GGT enzymes. Our assay is sensitive, quantitative, and conducted at physiological pH. We evaluated a series of gamma-glutamyl compounds as substrates for human GGT1 and human GGT5. The K(m) value for reduced glutathione was 11μM for both GGT1 and GGT5. However, the K(m) values for oxidized glutathione were 9μM for GGT1 and 43μM for GGT5. Our data show that the K(m) values for leukotriene C(4) are equivalent for GGT1 and GGT5 at 10.8 and 10.2μM, respectively. This assay was also used to evaluate serine-borate, a well-known inhibitor of GGT1, which was 8-fold more potent in inhibiting GGT1 than in inhibiting GGT5. These data provide essential information regarding the target enzymes for developing treatments for inflammatory diseases such as asthma and cardiovascular disease in humans. This assay is invaluable for studies of oxidative stress, drug metabolism, and other pathways that involve gamma-glutamyl compounds.
Journal of Biological Chemistry | 2011
Matthew B. West; Stephanie Wickham; Leslie M. Quinalty; Ryan E. Pavlovicz; Chenglong Li; Marie H. Hanigan
γ-Glutamyl transpeptidase (GGT) is a heterodimeric membrane enzyme that catalyzes the cleavage of extracellular glutathione and other γ-glutamyl-containing compounds. GGT is synthesized as a single polypeptide (propeptide) that undergoes autocatalytic cleavage, which results in the formation of the large and small subunits that compose the mature enzyme. GGT is extensively N-glycosylated, yet the functional consequences of this modification are unclear. We investigated the effect of N-glycosylation on the kinetic behavior, stability, and functional maturation of GGT. Using site-directed mutagenesis, we confirmed that all seven N-glycosylation sites on human GGT are modified by N-glycans. Comparative enzyme kinetic analyses revealed that single substitutions are functionally tolerated, although the N95Q mutation resulted in a marked decrease in the cleavage efficiency of the propeptide. However, each of the single site mutants exhibited decreased thermal stability relative to wild-type GGT. Combined mutagenesis of all N-glycosylation sites resulted in the accumulation of the inactive propeptide form of the enzyme. Use of N-glycosylation inhibitors demonstrated that binding of the core N-glycans, not their subsequent processing, is the critical glycosylation event governing the autocleavage of GGT. Although N-glycosylation is necessary for maturation of the propeptide, enzymatic deglycosylation of the mature wild-type GGT does not substantially impact either the kinetic behavior or thermal stability of the fully processed human enzyme. These findings are the first to establish that co-translational N-glycosylation of human GGT is required for the proper folding and subsequent cleavage of the nascent propeptide, although retention of these N-glycans is not necessary for maintaining either the function or structural stability of the mature enzyme.
Biochemical Journal | 2013
Stephanie Wickham; Nicholas Regan; Matthew B. West; Justin Thai; Paul F. Cook; Simon Terzyan; Pui Kai Li; Marie H. Hanigan
GGT (γ-glutamyl transpeptidase) is an essential enzyme for maintaining cysteine homoeostasis, leukotriene synthesis, metabolism of glutathione conjugates and catabolism of extracellular glutathione. Overexpression of GGT has been implicated in many pathologies, and clinical inhibitors of GGT are under development for use in the treatment of asthma, cancer and other diseases. Inhibitors are generally characterized using synthetic GGT substrates. The present study of uncompetitive inhibitors of GGT, has revealed that the potency with which compounds inhibit GGT activity in the standard biochemical assay does not correlate with the potency with which they inhibit the physiological reaction catalysed by GGT. Kinetic studies provided insight into the mechanism of inhibition. Modifications to the sulfobenzene or distal benzene ring of the uncompetitive inhibitor OU749 affected activity. One of the most potent inhibitors was identified among a novel group of analogues with an amine group para on the benzosulfonamide ring. New more potent uncompetitive inhibitors of the physiological GGT reaction were found to be less toxic than the glutamine analogues that have been tested clinically. Development of non-toxic inhibitors is essential for exploiting GGT as a therapeutic target.