Marie-Hélène Verlhac
Collège de France
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Hélène Verlhac.
Current Biology | 2000
Marie-Hélène Verlhac; Christophe Lefebvre; Philippe Guillaud; Pascale Rassinier; Bernard Maro
In both vertebrates and invertebrates, meiotic divisions in oocytes are typically asymmetric, resulting in the formation of a large oocyte and small polar bodies. The size difference between the daughter cells is usually a consequence of asymmetric positioning of the spindle before cytokinesis. Spindle movements are often related to interactions between the cell cortex and the spindle asters [1,2]. The spindles of mammalian oocytes are, however, typically devoid of astral microtubules, which normally connect the spindle to the cortex, suggesting that another mechanism is responsible for the unequal divisions in these oocytes. We observed the formation of the first polar body in wild-type oocytes and oocytes derived from c-Mos knockout mice [3]. In wild-type oocytes, the meiotic spindle formed in the centre of the cell and migrated to the cortex just before polar-body extrusion. The spindle did not elongate during anaphase. In mos-/- oocytes, the spindle formed centrally but did not migrate, although an asymmetric division still took place. In these oocytes, the spindle elongated during anaphase and the pole closest to the cortex moved while the other remained in place. Thus, a compensation mechanism exists in mouse oocytes and formation of the first polar body can be achieved in two ways: either after migration of the spindle to the cortex in wild-type oocytes, or after elongation, without migration, of the first meiotic spindle in mos-/- oocytes.
Nature Cell Biology | 2002
Bernard Maro; Marie-Hélène Verlhac
Asymmetric cell divisions are pivotal throughout development and generate cell diversification within the embryo. The formation of polar bodies during oocyte meiotic maturation provides the most extreme case of size difference between two daughter cells. New work in this issue indicates that formin-2, a microfilament-binding protein, is required for the eccentric positioning of the meiotic spindle that determines these unequal divisions.
The EMBO Journal | 2000
Marie-Hélène Verlhac; Christophe Lefebvre; Jacek Z. Kubiak; Muriel Umbhauer; Pascale Rassinier; William H. Colledge; Bernard Maro
Activation of mitogen‐activated protein kinase (MAPK) in maturing mouse oocytes occurs after synthesis of Mos, a MAPKKK. To investigate whether Mos acts only through MEK1, we microinjected constitutively active forms of MEK1 (MEK1S218D/S222D referred herein as MEK*) and Raf (ΔRaf) into mouse oocytes. In mos−/− oocytes, which do not activate MAPK during meiosis and do not arrest in metaphase II, MEK* and ΔRaf did not rescue MAPK activation and metaphase II arrest, whereas Mos induced a complete rescue. MEK* and ΔRaf induced cleavage arrest of two‐cell blastomeres. They induced MAPK activation when protein phosphatases were inhibited by okadaic acid, suggesting that Mos may inhibit protein phosphatases. Finally, in mos−/− oocytes, MEK* induced the phosphorylation of Xp42mapkD324N, a mutant less sensitive to dephosphorylation, showing that a MAPK phosphatase activity is present in mouse oocytes. We demonstrate that active MAPKK or MAPKKK cannot substitute for Mos to activate MAPK in mouse oocytes. We also show that a phosphatase activity inactivates MAPK, and that Mos can overcome this inhibitory activity. Thus Mos activates MAPK through two opposite pathways: activation of MEK1 and inhibition of a phosphatase.
Development | 2003
M. Emilie Terret; Christophe Lefebvre; Alexandre Djiane; Pascale Rassinier; Jacques Moreau; Bernard Maro; Marie-Hélène Verlhac
For the success of fertilization, spindles of vertebrate oocytes must remain stable and correctly organized during the arrest in metaphase II of meiosis. Using a two-hybrid screen with MAPK as a bait, we have recently identified MISS (MAPK interacting and spindle stabilizing) which controls mouse oocyte metaphase II spindle stability. Using the same screen, we identify another MAPK partner, DOC1R (Deleted in oral cancer one related), a murine homologue of a potential human tumor suppressor gene. We characterize DOC1R during mouse oocyte meiosis resumption. DOC1R is regulated by phosphorylation during meiotic maturation by MPF (M-phase promoting factor) and by the MOS/.../MAPK pathway. DOC1R and a DOC1R-GFP fusion localize to microtubules during meiotic maturation. Consistent with this microtubular localization, we show, by antisense and double-stranded RNA injection, that depletion of DOC1R induces microtubule defects in metaphase II oocytes. These defects are rescued by overexpressing a Xenopus DOC1R, showing that they are specific to DOC1R. Thus, the discovery of DOC1R, a substrate of MAPK that regulates microtubule organization of metaphase II mouse oocytes, reinforces the importance of this pathway in the control of spindle stability during the metaphase II arrest.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Agnieszka Kolano; Stéphane Brunet; Alain D. Silk; Don W. Cleveland; Marie-Hélène Verlhac
It is well established that chromosome segregation in female meiosis I (MI) is error-prone. The acentrosomal meiotic spindle poles do not have centrioles and are not anchored to the cortex via astral microtubules. By Cre recombinase-mediated removal in oocytes of the microtubule binding site of nuclear mitotic apparatus protein (NuMA), which is implicated in anchoring microtubules at poles, we determine that without functional NuMA, microtubules lose connection to MI spindle poles, resulting in highly disorganized early spindle assembly. Subsequently, very long spindles form with hyperfocused poles. The kinetochores of homologs make attachments to microtubules in these spindles but with reduced tension between them and accompanied by alignment defects. Despite this, the spindle assembly checkpoint is normally silenced and the advance to anaphase I and first polar body extrusion takes place without delay. Females without functional NuMA in oocytes are sterile, producing aneuploid eggs with altered chromosome number. These findings establish that in mammalian MI, the spindle assembly checkpoint is unable to sustain meiotic arrest in the presence of one or few misaligned and/or misattached kinetochores with reduced interkinetochore tension, thereby offering an explanation for why MI in mammals is so error-prone.
Journal of Cell Biology | 2005
Julien Dumont; Muriel Umbhauer; Pascale Rassinier; André Hanauer; Marie-Hélène Verlhac
Vertebrate oocytes arrest in metaphase of the second meiotic division (MII), where they maintain a high cdc2/cyclin B activity and a stable, bipolar spindle because of cytostatic factor (CSF) activity. The Mos–MAPK pathway is essential for establishing CSF. Indeed, oocytes from the mos−/− strain do not arrest in MII and activate without fertilization, as do Xenopus laevis oocytes injected with morpholino oligonucleotides directed against Mos. In Xenopus oocytes, p90Rsk (ribosomal S6 kinase), a MAPK substrate, is the main mediator of CSF activity. We show here that this is not the case in mouse oocytes. The injection of constitutively active mutant forms of Rsk1 and Rsk2 does not induce a cell cycle arrest in two-cell mouse embryos. Moreover, these two mutant forms do not restore MII arrest after their injection into mos−/− oocytes. Eventually, oocytes from the triple Rsk (1, 2, 3) knockout present a normal CSF arrest. We demonstrate that p90Rsk is not involved in the MII arrest of mouse oocytes.
PLOS ONE | 2008
Stéphane Brunet; Julien Dumont; Karen W. Lee; Kazuhisa Kinoshita; Pascale Hikal; Oliver J. Gruss; Bernard Maro; Marie-Hélène Verlhac
Formation of female gametes requires acentriolar spindle assembly during meiosis. Mitotic spindles organize from centrosomes and via local activation of the RanGTPase on chromosomes. Vertebrate oocytes present a RanGTP gradient centred on chromatin at all stages of meiotic maturation. However, this gradient is dispensable for assembly of the first meiotic spindle. To understand this meiosis I peculiarity, we studied TPX2, a Ran target, in mouse oocytes. Strikingly, TPX2 activity is controlled at the protein level through its accumulation from meiosis I to II. By RNAi depletion and live imaging, we show that TPX2 is required for spindle assembly via two distinct functions. It controls microtubule assembly and spindle pole integrity via the phosphorylation of TACC3, a regulator of MTOCs activity. We show that meiotic spindle formation in vivo depends on the regulation of at least a target of Ran, TPX2, rather than on the regulation of the RanGTP gradient itself.
Nature Cell Biology | 2013
Agathe Chaigne; Clément Campillo; Nir S. Gov; Raphaël Voituriez; Jessica Azoury; Claudia Umaña-Diaz; Maria Almonacid; Isabelle Queguiner; Pierre Nassoy; Cécile Sykes; Marie-Hélène Verlhac; Marie-Emilie Terret
At mitosis onset, cortical tension increases and cells round up, ensuring correct spindle morphogenesis and orientation. Thus, cortical tension sets up the geometric requirements of cell division. On the contrary, cortical tension decreases during meiotic divisions in mouse oocytes, a puzzling observation because oocytes are round cells, stable in shape, that actively position their spindles. We investigated the pathway leading to reduction in cortical tension and its significance for spindle positioning. We document a previously uncharacterized Arp2/3-dependent thickening of the cortical F-actin essential for first meiotic spindle migration to the cortex. Using micropipette aspiration, we show that cortical tension decreases during meiosis I, resulting from myosin-II exclusion from the cortex, and that cortical F-actin thickening promotes cortical plasticity. These events soften and relax the cortex. They are triggered by the Mos–MAPK pathway and coordinated temporally. Artificial cortex stiffening and theoretical modelling demonstrate that a soft cortex is essential for meiotic spindle positioning.
Journal of Cell Biology | 2010
Manuel Breuer; Agnieszka Kolano; Mijung Kwon; Chao-Chin Li; Ting-Fen Tsai; David Pellman; Stéphane Brunet; Marie-Hélène Verlhac
Similar to clustering of extra centrosomes in cancer cells, HURP promotes microtubule stability and sorts MTOCs into distinct poles during meiosis.
Journal of Cell Science | 2014
Maria Almonacid; Marie-Emilie Terret; Marie-Hélène Verlhac
ABSTRACT Asymmetric divisions are essential in metazoan development, where they promote the emergence of cell lineages. The mitotic spindle has astral microtubules that contact the cortex, which act as a sensor of cell geometry and as an integrator to orient cell division. Recent advances in live imaging revealed novel pools and roles of F-actin in somatic cells and in oocytes. In somatic cells, cytoplasmic F-actin is involved in spindle architecture and positioning. In starfish and mouse oocytes, newly discovered meshes of F-actin control chromosome gathering and spindle positioning. Because oocytes lack centrosomes and astral microtubules, F-actin networks are key players in the positioning of spindles by transmitting forces over long distances. Oocytes also achieve highly asymmetric divisions, and thus are excellent models to study the roles of these newly discovered F-actin networks in spindle positioning. Moreover, recent studies in mammalian oocytes provide a further understanding of the organisation of F-actin networks and their biophysical properties. In this Commentary, we present examples of the role of F-actin in spindle positioning and asymmetric divisions, with an emphasis on the most up-to-date studies from mammalian oocytes. We also address specific technical issues in the field, namely live imaging of F-actin networks and stress the need for interdisciplinary approaches.