Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Josée Simard is active.

Publication


Featured researches published by Marie-Josée Simard.


Theoretical and Applied Genetics | 2003

Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz

Suzanne I. Warwick; Marie-Josée Simard; Anne Légère; Hugh J. Beckie; L. Braun; B. Zhu; P. Mason; Ginette Séguin-Swartz; C. N. Stewart

Abstract. The frequency of gene flow from Brassica napus L. (canola) to four wild relatives, Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L. and Erucastrum gallicum (Willd.) O.E. Schulz, was assessed in greenhouse and/or field experiments, and actual rates measured in commercial fields in Canada. Various marker systems were used to detect hybrid individuals: herbicide resistance traits (HR), green fluorescent protein marker (GFP), species-specific amplified fragment length polymorphisms (AFLPs) and ploidy level. Hybridization between B. rapa and B. napus occurred in two field experiments (frequency approximately 7%) and in wild populations in commercial fields (approximately 13.6%). The higher frequency in commercial fields was most likely due to greater distance between B. rapa plants. All F1 hybrids were morphologically similar to B. rapa, had B. napus- and B. rapa-specific AFLP markers and were triploid (AAC, 2n = 29 chromosomes). They had reduced pollen viability (about 55%) and segregated for both self-incompatible and self-compatible individuals (the latter being a B. napus trait). In contrast, gene flow between R. raphanistrum and B. napus was very rare. A single R. raphanistrum × B. napus F1 hybrid was detected in 32,821 seedlings from the HR B. napus field experiment. The hybrid was morphologically similar to R. raphanistrum except for the presence of valves, a B. napus trait, in the distorted seed pods. It had a genomic structure consistent with the fusion of an unreduced gamete of R. raphanistrum and a reduced gamete of B. napus (RrRrAC, 2n = 37), both B. napus- and R. raphanistrum-specific AFLP markers, and had <1% pollen viability. No hybrids were detected in the greenhouse experiments (1,534 seedlings), the GFP field experiment (4,059 seedlings) or in commercial fields in Québec and Alberta (22,114 seedlings). No S. arvensis or E. gallicum × B. napus hybrids were detected (42,828 and 21,841 seedlings, respectively) from commercial fields in Saskatchewan. These findings suggest that the probability of gene flow from transgenic B. napus to R. raphanistrum, S. arvensis or E. gallicum is very low (<2–5 × 10–5). However, transgenes can disperse in the environment via wild B. rapa in eastern Canada and possibly via commercial B. rapa volunteers in western Canada.


Canadian Journal of Plant Science | 2006

A decade of herbicide-resistant crops in Canada

Hugh J. Beckie; K. N. Harker; Linda M. Hall; Suzanne I. Warwick; Anne Légère; P. H. Sikkema; G. W. Clayton; A. G. Thomas; J. Y. Leeson; G. Séguin-Swartz; Marie-Josée Simard

This review examines some agronomic, economic, and environmental impacts of herbicide-resistant (HR) canola, soybean, corn, and wheat in Canada after 10 yr of growing HR cultivars. The rapid adoption of HR canola and soybean suggests a net economic benefit to farmers. HR crops often have improved weed management, greater yields or economic returns, and similar or reduced environmental impact compared with their non-HR crop counterparts. There are no marked changes in volunteer weed problems associated with these crops, except in zero-tillage systems when glyphosate is used alone to control canola volunteers. Although gene flow from glyphosate-HR canola to wild populations of bird’s rape (Brassica rapa L.) in eastern Canada has been measured, enrichment of hybrid plants in such populations should only occur when and where herbicide selection pressure is applied. Weed shifts as a consequence of HR canola have been documented, but a reduction in weed species diversity has not been demonstrated. However, reli...


Weed Technology | 2002

The Frequency and Persistence of Volunteer Canola (Brassica napus) in Quebec Cropping Systems

Marie-Josée Simard; Anne Légère; Denis Pageau; Julie Lajeunesse; Suzanne Warwick

The presence of volunteer canola is becoming a significant agro-ecological concern, given the large-scale use of herbicide-tolerant varieties in some areas. Our goal was to estimate the frequency and persistence of volunteer canola in Québec cropping systems by surveying fields that included a single canola crop since 1995. A survey was conducted in 131 fields in the main canola-growing areas of Québec: in the Saguenay-Lac Saint-Jean region and the Québec City–La Pocatière area. Volunteer canola plants were counted in 0.25-m2 quadrats every 10 m along a W pattern, and every 15 m along the margins of 88 fields. Volunteer canola plants were found in 90% of the fields surveyed and in a wide range of crops, including cereal, corn, and soybean. Average densities of 4.9 and 3.9 plants/m2 were found 1 yr after canola production in fields and field margins, respectively. Volunteer canola densities decreased significantly over time. However, volunteer plants were still present at low densities 4 and 5 yr after production. Dense stands of volunteer canola were found before postemergence herbicide application in no-till fields (9.8 ± 4.1 plants/m2), suggesting that, contrary to what was suggested in the literature, seeds could become dormant in no-till as well as in tilled systems. A small proportion of the volunteer canola plants observed in no-till fields near Québec City and Ottawa included plants that had overwintered, either originating from fall-germinated seedlings, harvested adult plants that had grown new leaves before the onset of winter, or spring regrowth from the base of unharvested adult plants from experimental plots. The presence and persistence of low densities of volunteer canola may not have been a cause of concern until now. However, producers should be made more aware of the potential short-and long-term problems associated with potential gene flow between different herbicide-tolerant canola (HT canola) varieties and also between HT canola and related weed species. Nomenclature: Canola, Brassica napus L.; corn, Zea mays L.; soybean, Glycine max (L.) Merr. Additional index words: Herbicide-tolerant canola, oilseed rape, weed survey. Abbreviations: HT, herbicide-tolerant (canola).


Weed Science | 2005

Fitness of double vs. single herbicide-resistant canola

Marie-Josée Simard; Anne Légère; Ginette Séguin-Swartz; Harikumar Nair; Suzanne I. Warwick

Abstract Since 1995, canola cultivars with herbicide resistance (HR) have been readily adopted by Canadian producers. Gene flow between these cultivars with different HR traits has led to the occurrence of double herbicide–resistant (2HR) volunteers. To evaluate the fitness of canola volunteers with double HR, we compared three 2HR combinations to each of their parent single-HR plants (1HR: glufosinate-R, imidazolinone-R, glyphosate-R) commercial canola lines in separate greenhouse experiments. The replacement series design included five ratios of 2HR vs. 1HR plants at a single density of 129 plants m−2 and three stress treatments: herbicide application with either glufosinate, imazethapyr, or glyphosate; competition with a wheat crop; and a control without herbicide or wheat competition. Fitness indicators included aboveground biomass at 5 and 12 to 16 wk, seed production, and reproductive allocation. The 2HR plants showed delayed reproductive growth but were generally as competitive as 1HR commercial lines. Plant biomass of 2HR canola was comparable to or greater than 1HR canola, whereas seed biomass of 2HR canola was less than that of 1HR canola in half of the cases, likely because of delayed reproductive growth and early harvesting. Glufosinate–glyphosate 2HR was the fittest combination. Herbicide application had little effect on 2HR biomass at harvest, except for imazethapyr, which reduced the biomass and seed production of 2HR plants with imidazolinone-glyphosate resistance by 30%. The latter effect could have been from the unsuspected presence of 2HR plants with only one of the two acetolactate synthase mutations conferring resistance to imidazolinones. Wheat competition reduced fitness values of both 2HR and 1HR canola similarly, but seed production was still 64% that of the controls. Overall, there was little indication of reduced fitness in 2HR canola compared with commercial 1HR varieties. Nomenclature: Canola, Brassica napus L.; wheat, Triticum aestivum L. ‘Voyageur’, ‘AC Pollet’.


Weed Science | 2004

Synchrony of flowering between canola and wild radish (Raphanus raphanistrum)

Marie-Josée Simard; Anne Légère

Abstract Many conditions need to be satisfied for gene flow to occur between a transgenic crop and its weedy relatives. Flowering overlap is one essential requirement for hybrid formation. Hybridization can occur between canola and its wild relative, wild radish. We studied the effects of wild radish plant density and date of emergence, canola (glyphosate resistant) planting dates, presence of other weeds, and presence of a wheat crop on the synchrony of flowering between wild radish and canola (as a crop and volunteer). Four field experiments were conducted from 2000 to 2002 in St-David de Lévis, Québec. Flowering periods of wild radish emerging after glyphosate application overlapped with early-, intermediate-, and late-seeded canola 14, 26, and 55%, respectively, of the total flowering time. Flowering periods of early-emerging wild radish and canola volunteers in uncropped treatments overlapped from mid-June until the end of July, ranging from 26 to 81% of the total flowering time. Flowering periods of wild radish and canola volunteers emerging synchronously on May 30 or June 5 as weeds in wheat overlapped 88 and 42%, respectively, of their total flowering time. For later emergence dates, few flowers or seeds were produced by both species because of wheat competition. Wild radish density in canola and wild radish and canola volunteer densities in wheat did not affect the mean flowering dates of wild radish or canola. Increasing wild radish density in uncropped plots (pure or weedy stands) hastened wild radish flowering. Our results show that if hybridization is to happen, it will be most likely with uncontrolled early-emerging weeds in crops or on roadsides, field margins, and uncultivated areas, stressing the need to control the early flush of weeds, weedy relatives, and crop volunteers in noncrop areas. Nomenclature: Glyphosate; wild radish, Raphanus raphanistrum L. RAPRA; canola, Brassica napus L. ‘Hyola 357 RR’; wheat, Triticum aestivum L.


Canadian Journal of Plant Science | 2010

Distribution and abundance of an allergenic weed, common ragweed (Ambrosia artemisiifolia L.), in rural settings of southern Quebec, Canada

Marie-Josée Simard; Diane Lyse Benoit

Common ragweed (Ambrosia artemisiifolia L.) is an important weed of urban and rural settings in eastern Canada. Where the species is abundant, its wind-dispersed pollen is responsible for most cases of allergic rhinitis or “hayfever” in August and September. Despite its adverse health effects, there is little information on the actual abundance or distribution of ragweed plants in rural settings. Ragweed surveys were therefore done in July and August (after herbicide application) in corn and soybean fields, field borders and along rural roadsides surrounding two cities in southern Quebec. Based on zero-inflated Poisson regression models, ragweed density averaged 4.1 plants m-2 (Saint-Jean-sur-Richelieu area) and 16.1 plants m-2 (Salaberry-de-Valleyfield area) along roadsides. Ragweed density in field borders (1.3 plants m-2) and fields was lower than on roadsides. Conventionally tilled fields and fields where tillage was reduced had equivalent densities of ragweed. Ragweed abundance in fields was likely r...


Weed Technology | 2012

Could Weed Sensing in Corn Interrows Result in Efficient Weed Control

Louis Longchamps; Bernard Panneton; Marie-Josée Simard; Gilles D. Leroux

Abstract At the field scale, weeds generally appear aggregated rather than randomly distributed, and this aggregation is linked to the spatial heterogeneity of biotic and abiotic factors. Crop management practices shape the spatial pattern of weed infestations by modifying certain factors having an impact on weed emergence and growth. Although crop seeding is often the last in-field disturbance before crop and weed emergence, its effect on the distribution of weeds has received little attention in the literature. The purpose of this study was to assess the influence of the planting operation on weed cover and presence in corn fields using digital images to investigate the possibility of sensing the interrow to infer the presence or absence of weeds on the corn row. A total of 18 site-years under conventional tillage treated with a single POST application of herbicide were selected across seven locations. Image analysis, at the V2 to V4 growth stage of corn, was used to compare the weed cover in three zones: the undisturbed interrows, the corn rows, and the interrows compacted by tractor wheel traffic. For 61% of site-years, there was no significant difference among the zones. When there was a significant difference compared with the other two zones, the undisturbed interrow was usually less infested. Point-to-point comparisons of weed presence or absence (based on a threshold of five pixels) between the interrow and the corn row revealed 70 or 73% correspondence, depending on the type of interrow (undisturbed or tracked). However the error of inference of the corn row weed cover generated by sensing only adjacent interrows may be too high for efficient commercial weed control. Nomenclature: Corn, Zea mays L. Resumen A una escala de campo, las malezas generalmente aparecen distribuidas en forma agregada y no aleatoriamente, y este agregado está relacionado a la heterogeneidad espacial de los factores bióticos y abióticos. Las prácticas de manejo del cultivo dan forma a los patrones espaciales de las infestaciones de malezas, al modificar ciertos factores que impactan la emergencia y crecimiento de malezas. Aunque la siembra del cultivo es a menudo la última perturbación dentro del campo antes de que se de la emergencia del cultivo y de las malezas, su efecto sobre la distribución de las malezas ha recibido poca atención en la literatura. El objetivo de este estudio fue evaluar la influencia de la operación de siembra sobre la presencia y cobertura de malezas dentro de campos de maíz usando imágenes digitales para investigar la posibilidad de inferir la presencia o ausencia de malezas sobre la hilera de siembra, a partir de datos de los espacios entre-hileras del maíz. Un total de 18 sitios-años bajo labranza convencional tratados con una sola aplicación de herbicida fueron seleccionados a lo largo de siete localidades. Se usó análisis de imágenes, en los estados de crecimiento del maíz de V2 a V4, para comparar la cobertura de malezas en tres zonas: entre-hileras sin perturbación, en la hilera del maíz, y entre-hileras compactadas por el tráfico de las llantas del tractor Para el 61% de los sitios-años, no hubo diferencias significativas entre zonas. Cuando hubo una diferencia significativa en comparación con las otras dos zonas, las entre-hileras sin perturbación estuvieron usualmente menos infestadas. Comparaciones de punto-a-punto de la presencia o ausencia de malezas (con base en un umbral de cinco pixeles) entre la hilera del maíz y entre-hileras revelaron 70 ó 73% de correspondencia, dependiendo del tipo de entre-hilera (sin perturbación o con compactación por las llantas). Sin embargo, el error de la inferencia de la cobertura de malezas en la hilera del maíz, generada solamente con los datos de las entre-hileras adyacentes puede ser muy alto para un control de malezas eficiente a nivel comercial.


Weed Science | 2009

Validation of a Management Program Based on A Weed Cover Threshold Model: Effects on Herbicide Use and Weed Populations

Marie-Josée Simard; Bernard Panneton; Louis Longchamps; Claudel Lemieux; Anne Légère; Gilles D. Leroux

Abstract Weed management decisions based on weed threshold models offer the opportunity to reduce herbicide use by allowing the possibility of forgoing treatment or lowering rates. Weed thresholds based on a relative leaf-cover model were tested during a 4-yr period at two locations. Two 1.62-ha fields, planted to conventional and glyphosate-resistant corn (2004, 2005, 2007) or soybean (2006), were divided in 900 m2 sections. Herbicides were applied postemergence to each of these sections with either variable rates based on weed thresholds, or constant full rates. Variable herbicide rates included: no application, half rate, or full rate. Relative weed cover values of 0.2 and 0.4 (corn) or 0.1 and 0.3 (soybean) served as thresholds for incremental rates. Digital images were used to evaluate the relative weed cover. Weed density was assessed before and after herbicide application. Weed seed production was estimated for two species in 2004 and 2005. No difference in crop yield, relative weed cover, weed density, or weed seed production was observed between conventional and glyphosate-resistant cropping systems. During the first year, herbicide use reduction was obtained (−85.4%) with marginal crop yield loss (5 to 15%). In the subsequent 3 yr, preherbicide weed densities increased and concomitant increases in relative weed cover values did not allow more than a 10% overall reduction in herbicide use. This threshold model designed to maintain crop yields within a given year did not allow significant reduction in herbicide use during the following 3 yr. Residual weed populations most likely replenished the seed bank to levels that allowed weed densities to increase afterward. Increased weed density over time in plots treated with full rates of herbicide every year also indicated that a single postemergence herbicide treatment was not sufficient to contain weed populations at low levels every year in this corn–soybean rotation. Nomenclature: Glyphosate; corn, Zea mays L.; soybean, Glycine max (L.) Merr


Weed Technology | 2006

Control of Volunteer Canola with Herbicides: Effects of Plant Growth Stage and Cold Acclimation'

Anne Légère; Marie-Josée Simard; Eric N. Johnson; F. Craig Stevenson; Hugh J. Beckie; Robert E. Blackshaw

Phenoxy herbicides are frequently used to control volunteer canola populations. However, there have been claims that poor control could be due to cold acclimation of canola plants in the spring. The objective of this study was to determine whether cold acclimation or growth stage affected the response of canola volunteers to herbicides. In a growth room experiment, canola plants were prehardened and cold acclimated or were grown at 20/12 C and treated with one of six 2,4-D doses. Cold acclimation as achieved by this experiment affected upper and lower asymptotes of the dose–response curve but not the herbicide dose required to reduce canola weight by 50% relative to the nontreated control (GR50), indicating limited cold-related effects on canola tolerance to 2,4-D. Field experiments, conducted in the provinces of Québec and Saskatchewan, examined the effects of canola growth stage on the efficacy of 2,4-D, MCPA, and carfentrazone. Comparisons of the estimates from the dose–response curves confirmed that herbicide efficacy was consistently greater when canola plants were treated at an early growth stage, regardless of cultivar or herbicide used. The GR50 estimates for canola plants treated at a later growth stage exceeded the recommended rates. Some canola plants grown as volunteers in a wheat crop survived 2,4-D or MCPA treatments at 0.5× and 1× rates and produced up to 148 seeds/m2. Efficient control of canola volunteers will be obtained when plants are sprayed at an early growth stage, but near-total control will be highly desirable in order to restrict seedbank buildup, particularly when dealing with canola cultivars with different herbicide-resistant traits. Nomenclature: Canola, Brassica napus L.; wheat, Triticum aestivum L. Additional index words: Phenoxy herbicides, 2,4-D, MCPA, carfentrazone, Brassica napus, volunteer canola. Abbreviations: CA, cold acclimated; DAE, days after emergence; GR50, herbicide dose required to reduce canola weight by 50% relative to the nontreated control; NA, nonacclimated; PAR, photosynthetic photon flux density.


Weed Science | 2014

An Imagery-Based Weed Cover Threshold Established Using Expert Knowledge

Louis Longchamps; Bernard Panneton; Marie-Josée Simard; Gilles D. Leroux

Abstract The implementation of site-specific weed management requires information about weed cover and decision support systems to determine weed cover thresholds and concomitant herbicide rates. Although it is possible to create accurate weed cover maps over large areas, weed cover thresholds have generally been evaluated using tedious weed density counts. To bridge this gap between weed cover obtained by machine vision and the concept of economic threshold, crop advisers specializing in weed scouting were asked to evaluate over 2,500 weed cover images (2 m by 3 m) and determine if a given image would require herbicide application or not. Using the area under the “receiver operating characteristic” curve method, an optimal weed cover threshold was established. The derived economic thresholds ranged from 0.06 to 0.31% weed cover contingent on the level of tolerance of the expert adviser. Although this threshold seems low, it is comparable with economic threshold values based on weed density.

Collaboration


Dive into the Marie-Josée Simard's collaboration.

Top Co-Authors

Avatar

Anne Légère

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Bernard Panneton

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert E. Nurse

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Diane Lyse Benoit

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Hugh J. Beckie

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Darbyshire

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Suzanne I. Warwick

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Ardath Francis

Agriculture and Agri-Food Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge