Marie K. Mankowski
Southern Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie K. Mankowski.
Antimicrobial Agents and Chemotherapy | 2008
Carol Lackman-Smith; Clay Osterling; Katherine Luckenbaugh; Marie K. Mankowski; Beth Snyder; Gareth Lewis; Jeremy R. A. Paull; Albert T. Profy; Roger G. Ptak; Robert W. Buckheit; Karen M. Watson; James E. Cummins; Brigitte E. Sanders-Beer
ABSTRACT Topical microbicides are self-administered, prophylactic products for protection against sexually transmitted pathogens. A large number of compounds with known anti-human immunodeficiency virus type 1 (HIV-1) inhibitory activity have been proposed as candidate topical microbicides. To identify potential leads, an in vitro screening algorithm was developed to evaluate candidate microbicides in assays that assess inhibition of cell-associated and cell-free HIV-1 transmission, entry, and fusion. The algorithm advances compounds by evaluation in a series of defined assays that generate measurements of relative antiviral potency to determine advancement or failure. Initial testing consists of a dual determination of inhibitory activity in the CD4-dependent CCR5-tropic cell-associated transmission inhibition assay and in the CD4/CCR5-mediated HIV-1 entry assay. The activity is confirmed by repeat testing, and identified actives are advanced to secondary screens to determine their effect on transmission of CXCR4-tropic viruses in the presence or absence of CD4 and their ability to inhibit CXCR4- and CCR5-tropic envelope-mediated cell-to-cell fusion. In addition, confirmed active compounds are also evaluated in the presence of human seminal plasma, in assays incorporating a pH 4 to 7 transition, and for growth inhibition of relevant strains of lactobacilli. Leads may then be advanced for specialized testing, including determinations in human cervical explants and in peripheral blood mononuclear cells against primary HIV subtypes, combination testing with other inhibitors, and additional cytotoxicity assays. PRO 2000 and SPL7013 (the active component of VivaGel), two microbicide products currently being evaluated in human clinical trials, were tested in this in vitro algorithm and were shown to be highly active against CCR5- and CXCR4-tropic HIV-1 infection.
Journal of Biological Chemistry | 2008
Cheryl A. Stoddart; Geneviève Nault; Sofiya A. Galkina; Karen Thibaudeau; Peter Bakis; Nathalie Bousquet-Gagnon; Martin Robitaille; Maryanne Bellomo; Véronique Paradis; Patricia Liscourt; Alexandra Lobach; Marie-Ève Rivard; Roger G. Ptak; Marie K. Mankowski; Dominique P. Bridon; Omar Quraishi
Entry inhibitors of human immunodeficiency virus, type 1 (HIV-1) have been the focus of much recent research. C34, a potent fusion inhibitor derived from the HR2 region of gp41, was engineered into a 1:1 human serum albumin conjugate through stable covalent attachment of a maleimido-C34 analog onto cysteine 34 of albumin. This bioconjugate, PC-1505, was designed to require less frequent dosing and less peptide than T-20 and was assessed for its antifusogenic activity both in vitro and in vivo in the SCID-hu Thy/Liv mouse model. PC-1505 was essentially equipotent to the original C34 peptide and to T-20 in vitro. In HIV-1-infected SCID-hu Thy/Liv mice, T-20 lost activity with infrequent dosing, whereas the antiviral potency of PC-1505 was sustained, and PC-1505 was active against T-20-resistant (“DIV”) virus with a G36D substitution in gp41. The in vivo results are the direct result of a significantly improved pharmacokinetic profile for the C34 peptide following albumin conjugation. Contrary to previous reports that the gp41 NHR trimer is poorly accessible to C34 fused to protein cargoes of increasing size (Hamburger, A. E., Kim, S., Welch, B. D., and Kay, M. S. (2005) J. Biol. Chem. 280, 12567–12572), these results are the first demonstration of the capacity for a large, endogenous serum protein to gain unobstructed access to the transient gp41 intermediates that exist during the HIV fusion process, and it supports further development of albumin conjugation as a promising approach to inhibit HIV-1 entry.
Antimicrobial Agents and Chemotherapy | 2006
Brigitte E. Beer; Gustavo F. Doncel; Fred C. Krebs; Robin J. Shattock; Patricia Fletcher; Robert W. Buckheit; Karen Watson; Charlene S. Dezzutti; James E. Cummins; Ena Bromley; Nicola Richardson-Harman; Luke A. Pallansch; Carol Lackman-Smith; Clay Osterling; Marie K. Mankowski; Shendra R. Miller; Bradley J. Catalone; Patricia A. Welsh; Mary K. Howett; Brian Wigdahl; Jim A. Turpin; Patricia Reichelderfer
ABSTRACT The first product to be clinically evaluated as a microbicide contained the nonionic surfactant nonoxynol-9 (nonylphenoxypolyethoxyethanol; N-9). Many laboratories have used N-9 as a control compound for microbicide assays. However, no published comparisons of the results among laboratories or attempts to establish standardized protocols for preclinical testing of microbicides have been performed. In this study, we compared results from 127 N-9 toxicity and 72 efficacy assays that were generated in five different laboratories over the last six years and were performed with 14 different cell lines or tissues. Intra-assay reproducibility was measured at two-, three-, and fivefold differences using standard deviations. Interassay reproducibility was assessed using general linear models, and interaction between variables was studied using step-wise regression. The intra-assay reproducibility within the same N-9 concentration, cell type, assay duration, and laboratory was consistent at the twofold level of standard deviations. For interassay reproducibility, cell line, duration of assay, and N-9 concentration were all significant sources of variability (P < 0.01). Half-maximal toxicity concentrations for N-9 were similar between laboratories for assays of similar exposure durations, but these similarities decreased with lower test concentrations of N-9. Results for both long (>24 h) and short (<2 h) exposures of cells to N-9 showed variability, while assays with 4 to 8 h of N-9 exposure gave results that were not significantly different. This is the first analysis to compare preclinical N-9 toxicity levels that were obtained by different laboratories using various protocols. This comparative work can be used to develop standardized microbicide testing protocols that will help advance potential microbicides to clinical trials.
Journal of Biological Chemistry | 2006
Abdul Waheed; Sherimay D. Ablan; Marie K. Mankowski; James E. Cummins; Roger G. Ptak; Carl P. Schaffner; Eric O. Freed
Membrane cholesterol plays an important role in human immunodeficiency virus type 1 (HIV-1) particle production and infectivity. Here, we have investigated the target and mechanism of action of a cholesterol-binding compound, the polyene antifungal antibiotic amphotericin B methyl ester (AME). We found that AME potently inhibited the replication of a highly divergent panel of HIV-1 isolates in various T-cell lines and primary cells irrespective of clade or target cell tropism. The defects in HIV-1 replication caused by AME were due to profoundly impaired viral infectivity as well as a defect in viral particle production. To elucidate further the mechanism of action of AME, we selected for and characterized AME-resistant HIV-1 variants. Mutations responsible for AME resistance mapped to a highly conserved and functionally important endocytosis motif in the cytoplasmic tail of the transmembrane glycoprotein gp41. Interestingly, truncation of the gp41 cytoplasmic tail in the context of either HIV-1 or rhesus macaque simian immunodeficiency virus also conferred resistance to AME. The infectivity of HIV-1 virions bearing murine leukemia virus or vesicular stomatitis virus glycoproteins was unaffected by AME. Our data define the target and mechanism of action of AME and provide support for the concept that cholesterol-binding compounds should be pursued as antiretroviral drugs to disrupt HIV-1 replication.
Antimicrobial Agents and Chemotherapy | 2010
E. Randall Lanier; Roger G. Ptak; Bernhard Lampert; Laurie Keilholz; Tracy L. Hartman; Robert W. Buckheit; Marie K. Mankowski; Mark C. Osterling; Merrick R. Almond; George R. Painter
ABSTRACT CMX157 is a lipid (1-0-hexadecyloxypropyl) conjugate of the acyclic nucleotide analog tenofovir (TFV) with activity against both wild-type and antiretroviral drug-resistant HIV strains, including multidrug nucleoside/nucleotide analog-resistant viruses. CMX157 was consistently >300-fold more active than tenofovir against multiple viruses in several different cell systems. CMX157 was active against all major subtypes of HIV-1 and HIV-2 in fresh human peripheral blood mononuclear cells (PBMCs) and against all HIV-1 strains evaluated in monocyte-derived macrophages, with 50% effective concentrations (EC50s) ranging between 0.20 and 7.2 nM. The lower CMX157 EC50s can be attributed to better cellular uptake of CMX157, resulting in higher intracellular levels of the active antiviral anabolite, TFV-diphosphate (TFV-PP), inside target cells. CMX157 produced >30-fold higher levels of TFV-PP in human PBMCs exposed to physiologically relevant concentrations of the compounds than did TFV. Unlike conventional prodrugs, including TFV disoproxil fumarate (Viread), CMX157 remains intact in plasma, facilitating uptake by target cells and decreasing relative systemic exposure to TFV. There was no detectable antagonism with CMX157 in combination with any marketed antiretroviral drug, and it possessed an excellent in vitro cytotoxicity profile. CMX157 is a promising clinical candidate to treat wild-type and antiretroviral drug-resistant HIV, including strains that fail to respond to all currently available nucleoside/nucleotide reverse transcriptase inhibitors.
Vaccine | 2009
Mei-Yun Zhang; Yanping Wang; Marie K. Mankowski; Roger G. Ptak; Dimiter S. Dimitrov
The elicitation of broadly cross-reactive HIV-1 neutralizing antibodies in humans remains a major challenge in developing a viable AIDS vaccine. We hypothesized that prolonged exposure to candidate vaccine immunogens could enhance the elicitation of such antibodies. In an attempt to develop HIV-1 vaccine immunogens with prolonged half-lives and increased stability, we constructed a fusion protein, gp41Fc, in which a truncated HIV-1 gp41(89.6) was fused to a human IgG(1) Fc. Gp41Fc is stable in solution, retains its antigenic structure and is highly immunogenic in rabbits. The serum titers reached 1:102,400 for the gp41Fc and 1:5,120 for gp140(89.6). Rabbit IgG neutralized diverse HIV-1 isolates and HIV-2, and the neutralization activity was attributed to gp41-specific IgG. The concentration of the gp41Fc in the serum correlated with the neutralization activity of rabbit IgG which recognized mostly conformation-independent epitopes on gp41 and predominantly bound to peptides derived from the gp41 immunodominant loop region. These results suggest that the prolonged half-life of gp41Fc in the serum may enhance the generation of cross-reactive neutralizing antibodies. Further research is needed to confirm and extend these results which may have implications for the development of vaccine immunogens with enhanced capability to elicit cross-reactive HIV-1-neutralizing antibodies.
Journal of Virology | 2012
Navid Madani; Marie K. Mankowski; Arne Schön; Isaac Zentner; Gokul Swaminathan; Amy M. Princiotto; Kevin Anthony; Apara Oza; Luz Jeannette Sierra; Shendra Passic; Xiaozhao Wang; David M. Jones; Eric Stavale; Fred C. Krebs; Julio Martín-García; Ernesto Freire; Roger G. Ptak; Joseph Sodroski; Simon Cocklin; Amos B. Smith
ABSTRACT The HIV-1 capsid (CA) protein plays essential roles in both early and late stages of virl replication and has emerged as a novel drug target. We report hybrid structure-based virtual screening to identify small molecules with the potential to interact with the N-terminal domain (NTD) of HIV-1 CA and disrupt early, preintegration steps of the HIV-1 replication cycle. The small molecule 4,4′-[dibenzo[b,d]furan-2,8-diylbis(5-phenyl-1H-imidazole-4,2-diyl)]dibenzoic acid (CK026), which had anti-HIV-1 activity in single- and multiple-round infections but failed to inhibit viral replication in peripheral blood mononuclear cells (PBMCs), was identified. Three analogues of CK026 with reduced size and better drug-like properties were synthesized and assessed. Compound I-XW-053 (4-(4,5-diphenyl-1H-imidazol-2-yl)benzoic acid) retained all of the antiviral activity of the parental compound and inhibited the replication of a diverse panel of primary HIV-1 isolates in PBMCs, while displaying no appreciable cytotoxicity. This antiviral activity was specific to HIV-1, as I-XW-053 displayed no effect on the replication of SIV or against a panel of nonretroviruses. Direct interaction of I-XW-053 was quantified with wild-type and mutant CA protein using surface plasmon resonance and isothermal titration calorimetry. Mutation of Ile37 and Arg173, which are required for interaction with compound I-XW-053, crippled the virus at an early, preintegration step. Using quantitative PCR, we demonstrated that treatment with I-XW-053 inhibited HIV-1 reverse transcription in multiple cell types, indirectly pointing to dysfunction in the uncoating process. In summary, we have identified a CA-specific compound that targets and inhibits a novel region in the NTD-NTD interface, affects uncoating, and possesses broad-spectrum anti-HIV-1 activity.
Antimicrobial Agents and Chemotherapy | 2011
Ioannis Kagiampakis; Arbi Gharibi; Marie K. Mankowski; Beth Snyder; Roger G. Ptak; Kristabelle Alatas; Patricia J. LiWang
ABSTRACT The development of an anti-HIV microbicide is critical in the fight against the spread of HIV. It is shown here that the covalent linking of compounds that bind gp120 with compounds that bind gp41 can inhibit HIV entry even more potently than individual inhibitors or noncovalent combinations. The most striking example involves griffithsin, a potent HIV inhibitor that binds to the surface of HIV gp120. While griffithsin inhibits HIV Env-mediated fusion in a CCR5-tropic cell-cell fusion assay with a 50% inhibitory concentration (IC50) of 1.31 ± 0.87 nM and the gp41-binding peptide C37 shows an IC50 of 18.2 ± 7.6 nM, the covalently linked combination of griffithsin with C37 (Griff37) has an IC50 of 0.15 ± 0.05 nM, exhibiting a potency 8.7-fold greater than that of griffithsin alone. Similarly, in CXCR4-tropic cell-cell fusion assays, Griff37 is 5.2-fold more potent than griffithsin alone. In viral assays, both griffithsin and Griff37 inhibit HIV replication at midpicomolar levels, but the linked compound Griff37 is severalfold more potent than griffithsin alone against both CCR5- and CXCR4-tropic virus strains. Another example of this strategy is the covalently linked combination of peptide C37 with a variant of the gp120-binding peptide CD4M33 (L. Martin et al., Nat. Biotechnol. 21:71-76, 2003). Also, nuclear magnetic resonance (NMR) spectra for several of these compounds are shown, including, to our knowledge, the first published NMR spectrum for griffithsin.
Journal of Biological Chemistry | 2011
Bo Zhao; Marie K. Mankowski; Beth Snyder; Roger G. Ptak; Patricia J. LiWang
Blocking HIV-1 cell entry has long been a major goal of anti-HIV drug development. Here, we report a successful design of two highly potent chimeric HIV entry inhibitors composed of one CCR5-targeting RANTES (regulated on activation normal T cell expressed and secreted) variant (5P12-RANTES or 5P14-RANTES (Gaertner, H., Cerini, F., Escola, J. M., Kuenzi, G., Melotti, A., Offord, R., Rossitto-Borlat, I., Nedellec, R., Salkowitz, J., Gorochov, G., Mosier, D., and Hartley, O. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 17706–17711)) linked to a gp41 fusion inhibitor, C37. Chimeric inhibitors 5P12-linker-C37 and 5P14-linker-C37 showed extremely high antiviral potency in single cycle and replication-competent viral assays against R5-tropic viruses, with IC50 values as low as 0.004 nm. This inhibition was somewhat strain-dependent and was up to 100-fold better than the RANTES variant alone or in combination with unlinked C37. The chimeric inhibitors also fully retained the antiviral activity of C37 against X4-tropic viruses, and this inhibition can be further enhanced significantly if the target cell co-expresses CCR5 receptor. On human peripheral blood mononuclear cells, the inhibitors showed very strong inhibition against R5-tropic Ba-L strain and X4-tropic IIIB strain, with IC50 values as low as 0.015 and 0.44 nm, which are 45- and 16-fold better than the parent inhibitors, respectively. A clear delivery mechanism requiring a covalent linkage between the two segments of the chimera was observed and characterized. Furthermore, the two chimeric inhibitors are fully recombinant and are easily produced at low cost. These attributes make them excellent candidates for anti-HIV microbicides. The results of this study also suggest a potent approach for optimizing existing HIV entry inhibitors or designing new inhibitors.
Journal of Biological Chemistry | 2015
Erez Pery; Ann M. Sheehy; N. Miranda Nebane; Andrew Jay Brazier; Vikas Misra; Kottampatty S. Rajendran; Sara J. Buhrlage; Marie K. Mankowski; Lynn Rasmussen; E. Lucile White; Roger G. Ptak; Dana Gabuzda
Background: The interaction between HIV Vif protein and innate antiviral factor APOBEC3G represents a potential therapeutic target. Results: Screening for inhibitors of Vif-APOBEC3G interaction identified a small molecule, N.41, that protects APOBEC3G from Vif-mediated degradation and exhibits antiviral activity. Conclusion: N.41 is a lead for further development as an antiviral. Significance: These findings suggest new strategies for developing anti-HIV therapeutics. APOBEC3G (A3G) is a cellular cytidine deaminase that restricts HIV-1 replication by inducing G-to-A hypermutation in viral DNA and by deamination-independent mechanisms. HIV-1 Vif binds to A3G, resulting in its degradation via the 26 S proteasome. Therefore, this interaction represents a potential therapeutic target. To identify compounds that inhibit interaction between A3G and HIV-1 Vif in a high throughput format, we developed a homogeneous time-resolved fluorescence resonance energy transfer assay. A 307,520 compound library from the NIH Molecular Libraries Small Molecule Repository was screened. Secondary screens to evaluate dose-response performance and off-target effects, cell-based assays to identify compounds that attenuate Vif-dependent degradation of A3G, and assays testing antiviral activity in peripheral blood mononuclear cells and T cells were employed. One compound, N.41, showed potent antiviral activity in A3G(+) but not in A3G(−) T cells and had an IC50 as low as 8.4 μm and a TC50 of >100 μm when tested against HIV-1Ba-L replication in peripheral blood mononuclear cells. N.41 inhibited the Vif-A3G interaction and increased cellular A3G levels and incorporation of A3G into virions, thereby attenuating virus infectivity in a Vif-dependent manner. N.41 activity was also species- and Vif-dependent. Preliminary structure-activity relationship studies suggest that a hydroxyl moiety located at a phenylamino group is critical for N.41 anti-HIV activity and identified N.41 analogs with better potency (IC50 as low as 4.2 μm). These findings identify a new lead compound that attenuates HIV replication by liberating A3G from Vif regulation and increasing its innate antiviral activity.