Marie Konečná
Central European Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie Konečná.
International Journal of Environmental Research and Public Health | 2014
Dagmar Chudobova; Simona Dostalova; Iva Blazkova; Petr Michalek; Branislav Ruttkay-Nedecky; Matej Sklenar; Jiri Kudr; Jaromír Gumulec; Katerina Tmejova; Marie Konečná; Marketa Vaculovicova; David Hynek; Michal Masarik; Jindrich Kynicky; Rene Kizek; Vojtech Adam
There is an arising and concerning issue in the field of bacterial resistance, which is confirmed by the number of deaths associated with drug-resistant bacterial infections. The aim of this study was to compare the effects of antibiotics on Staphylococcus aureus non-resistant strain and strains resistant to cadmium or lead ions. Metal resistant strains were created by the gradual addition of 2 mM solution of metal ions (cadmium or lead) to the S. aureus culture. An increasing antimicrobial effect of ampicillin, streptomycin, penicillin and tetracycline (0, 10, 25, 50, 75, 150, 225 and 300 µM) on the resistant strains was observed using a method of growth curves. A significant growth inhibition (compared to control) of cadmium resistant cells was observed in the presence of all the four different antibiotics. On the other hand, the addition of streptomycin and ampicillin did not inhibit the growth of lead resistant strain. Other antibiotics were still toxic to the bacterial cells. Significant differences in the morphology of cell walls were indicated by changes in the cell shape. Our data show that the presence of metal ions in the urban environment may contribute to the development of bacterial strain resistance to other substances including antibiotics, which would have an impact on public health.
Electrophoresis | 2014
Jiri Kudr; Kristyna Cihalova; Dagmar Chudobova; Michal Zurek; Ludek Zalud; Lukas Kopecny; Frantisek Burian; Branislav Ruttkay–Nedecky; Sona Krizkova; Marie Konečná; David Hynek; Pavel Kopel; Jan Prasek; Vojtech Adam; Rene Kizek
Remote‐controlled robotic systems are being used for analysis of various types of analytes in hostile environment including those called extraterrestrial. The aim of our study was to develop a remote‐controlled robotic platform (ORPHEUS‐HOPE) for bacterial detection. For the platform ORPHEUS‐HOPE a 3D printed flow chip was designed and created with a culture chamber with volume 600 μL. The flow rate was optimized to 500 μL/min. The chip was tested primarily for detection of 1‐naphthol by differential pulse voltammetry with detection limit (S/N = 3) as 20 nM. Further, the way how to capture bacteria was optimized. To capture bacterial cells (Staphylococcus aureus), maghemite nanoparticles (1 mg/mL) were prepared and modified with collagen, glucose, graphene, gold, hyaluronic acid, and graphene with gold or graphene with glucose (20 mg/mL). The most up to 50% of the bacteria were captured by graphene nanoparticles modified with glucose. The detection limit of the whole assay, which included capturing of bacteria and their detection under remote control operation, was estimated as 30 bacteria per μL.
Sensors | 2013
Branislav Ruttkay-Nedecky; Jiří Kudr; Monika Kremplova; Natalia Cernei; Jan Prasek; Marie Konečná; Ondrej Zitka; Jindrich Kynicky; Pavel Kopel; Rene Kizek; Vojtech Adam
In this study, we focused on microfluidic electrochemical analysis of zinc complexes (Zn(phen)(his)Cl2, Zn(his)Cl2) and ZnS quantum dots (QDs) using printed electrodes. This method was chosen due to the simple (easy to use) instrumentation and variable setting of flows. Reduction signals of zinc under the strictly defined and controlled conditions (pH, temperature, flow rate, accumulation time and applied potential) were studied. We showed that the increasing concentration of the complexes (Zn(phen)(his)Cl2, Zn(his)Cl2) led to a decrease in the electrochemical signal and a significant shift of the potential to more positive values. The most likely explanation of this result is that zinc is strongly bound in the complex and its distribution on the electrode is very limited. Changing the pH from 3.5 to 5.5 resulted in a significant intensification of the Zn(II) reduction signal. The complexes were also characterized by UV/VIS spectrophotometry, chromatography, and ESI-QTOF mass spectrometry.
Electrophoresis | 2014
Jiri Kudr; Branislav Ruttkay-Nedecky; Marie Konečná; Pavel Kopel; Ondrej Zitka; Rene Kizek; Vojtech Adam
Microfluidic techniques have been developed intensively in recent years due to lower reagent consumption, faster analysis, and possibility of the integration of several analytical detectors into one chip. Electrochemical detectors are preferred in microfluidic systems, whereas liposomes can be used for amplification of the electrochemical signals. The aim of this study was to design a nanodevice for targeted anchoring of liposome as transport device. In this study, liposome with encapsulated Zn(II) was prepared. Further, gold nanoparticles were anchored onto the liposome surface allowing binding of thiol moiety‐modified molecules (DNA). For targeted capturing of the transport device, DNA loops were used. DNA loops were represented by paramagnetic microparticles with oligo(DT)25 chain, on which a connecting DNA was bound. Capturing of transport device was subsequently done by hybridization to the loop. The individual steps were analyzed by electrochemistry and UV/Vis spectrometry. For detection of Zn(II) encapsulated in liposome, a microfluidic system was used. The study succeeded in demonstrating that liposome is suitable for the transport of Zn(II) and nucleic acids. Such transporter may be used for targeted binding using DNA anchor system.
International Journal of Biological Macromolecules | 2015
Sylvie Skalickova; Jiri Kudr; Branislav Ruttkay-Nedecky; Simona Dostalova; Monika Kremplova; Renata Kensova; Amitava Moulick; Marie Konečná; Vojtech Adam; Rene Kizek
Arsenic compounds belong to the most controversial agents concerning human health. Arsenic (As) is considered as a top environmental element influencing human health due to its adverse effects including cancer, diabetes, cardiovascular disease, and reproductive or developmental problems. Despite the proven mutagenic, teratogenic and carcinogenic effects, the arsenic compounds are used for centuries to treat infectious diseases. In our work, we focused on studying of interactions of As(III) and/or As(V) with DNA. Interactions between arsenic ions and DNA were monitored by UV/vis spectrophotometry by measuring absorption and fluorescence spectra, atomic absorption spectrometry, electrochemical measurements (square wave voltammetry) and agarose gel electrophoresis. Using these methods, we observed a stable structure of DNA with As(III) within the concentration range 0.4-6.25 μg mL(-1). Higher As(III) concentration caused degradation of DNA. However, similar effects were not observed for As(V).
International Journal of Environmental Research and Public Health | 2013
Renata Kensova; Iva Blazkova; Marie Konečná; Pavel Kopel; Dagmar Chudobova; Ondrej Zitka; Marketa Vaculovicova; David Hynek; Vojtech Adam; Miroslava Beklova; Rene Kizek
The aim of the study was the preparation of a liposome complex with encapsulated lead ions, which were electrochemically detected. In particular, experiments were focused on the potential of using an electrochemical method for the determination of free and liposome-encapsulated lead and determination of the encapsulation efficiency preventing the lead toxicity. Primarily, encapsulation of lead ions in liposomes and confirmation of successful encapsulation by electrochemical methods was done. Further, the reduction effect of the liposome matrix on the detected electrochemical signal was monitored. Besides encapsulation itself, comparison of toxicity of free lead ions and lead ions encapsulated in liposome was tested. The calculated IC50 values for evaluating the lead cytotoxicity showed significant differences between the lead enclosed in liposomes (28 µM) and free lead ions (237 µM). From the cytotoxicity studies on the bacterial strain of S. aureus it was observed that the free lead ions are less toxic in comparison with lead encapsulated in liposomes. Liposomes appear to be a suitable carrier of various substances through the inner cavity. Due to the liposome structure the lead enclosed in the liposome is more easily accepted into the cell structure and the toxicity of the enclosed lead is higher in comparison to free lead ions.
Spectrochimica Acta Part B: Atomic Spectroscopy | 2007
Marie Konečná; Josef Komárek
Spectrochimica Acta Part B: Atomic Spectroscopy | 2008
Marie Konečná; Josef Komárek; Libuše Trnková
Archive | 2013
Dagmar Chudobova; Jiri Dobes; Darina Maskova; Branislav-Ruttkay Nedecky; Olga Krystofova; Jindrich Kynicky; Marie Konečná; Josef Zehnálek; Borivoj Klejdus; Rene Kizek; Vojtech Adam
Analytical Sciences | 2010
Rostislav Červenka; Hana Zelinková; Marie Konečná; Josef Komárek
Collaboration
Dive into the Marie Konečná's collaboration.
University of Veterinary and Pharmaceutical Sciences Brno
View shared research outputs