Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie Kopecká is active.

Publication


Featured researches published by Marie Kopecká.


Archives of Microbiology | 1992

The influence of Congo red on the cell wall and (1 → 3)-β-d-glucan microfibril biogenesis in Saccharomyces cerevisiae

Marie Kopecká; Miroslav Gabriel

Congo red was applied to growing yeast cells and regenerating protoplasts in order to study its effects on wall biogenesis and cell morphogenesis. In the presence of the dye, the whole yeast cells grew and divided to form chains of connected cells showing aberrant wall structures on both sides of the septum. The wall-less protoplasts in solid medium with the dye exhibited an abnormal increase in volume, regeneration of aberrant cell walls and inability to carry out cytokinesis or protoplast reversion to cells. In liquid medium, the protoplasts synthesized glucan nets composed mainly of thin fibrils orientated at random, whereas normally, in the absence of dye, the nets consist of rather thick fibrils, 10 to 20 nm in width, assembled into broad ribbons. These fibrils are known to consist of triple 6/1 helical strands of (1 » 3)-β-d-glucan aggregated laterally in crystalline packing. The thin fibrils (c. 4 to 8 nm wide) can contain only a few triple helical strands (c. 1.6 nm wide) and are supposed to be prevented from further aggregation and crystallization by complexing with Congo red on their surfaces. Some loose triple 6/1 helical strands (native elementary fibrils) are also discernible. They represent the first native (1 » 3)-β-d-glucan elementary fibrils depicted by electron microscopy.The effects of Congo red on growth and the wall structure in normal cells and regenerating protoplasts in solid medium can be explained by the presence of a complex which the dye forms with (helical) chain parts of the glucan network and which results in a loss of rigidity by a blocked lateral interaction between the helices.


Microbiology | 1976

On the nature and formation of the fibrillar nets produced by protoplasts of Saccharomyces cerevisiae in liquid media: an electronmicroscopic, X-ray diffraction and chemical study.

D. R. Kreger; Marie Kopecká

The nets produced by protoplasts of Saccharomyces cerevisiae in liquid culture media consisted of microfibrils about 20 nm wide, forming flat, fairly straight bundles of variable width and length, up to about 500 nm wide and 4 mum long. Ends of microfibrils were seldom found. They were not attacked by chitinase or dilute acids, but the net structure disappeared in 3% (w/v) NaOH, leaving about 60% dry wt of the nets as partly microfibrillar clusters. The X-ray powder pattern from the nets, in contrast to that from normal walls, exhibited a set of well-defined rings which identified two micro-crystalline constituents: chitin and unbranched chains of beta-(1 leads to 3)-linked D-glucose residues. These latter were the alkali-soluble fraction. The X-ray diagram of the glucan, corresponding to that of paramylon, indicated an in vivo crystal modification. Up to 15% dry wt was chitin which was found de novo by the protoplasts. A fine net structure of microfibrils about 7-5 to 10 nm thick with meshes about 20 to 60 nm wide was demonstrated in normal walls, forming the entire inner layer and consisting mainly of yeast glucan. This glucan and chitin were only slightly crystalline in these walls. The features of the glucan and chitin of the protoplast nets indicate that enzymes active in normal wall formation were differentially removed or inactivated by the liquid medium.


Microbiology | 1995

Disruption of the actin cytoskeleton in budding yeast results in formation of an aberrant cell wall.

Miroslav Gabriel; Marie Kopecká

A temperature-sensitive, conditionally lethal actin mutant of Saccharomyces cerevisiae, DBY 1693, was used to study, using light and electron microscopy, dysfunction of the actin cytoskeleton in the morphogenesis of the cell wall. Cells of this mutant strain survived at least 24 h at the restrictive temperature (37 degrees C). These cells showed isodiametric growth. Mutant cells accumulated vesicles, probably as a consequence of chaotic secretory transport caused by loss of polarity. A conspicuous morphological response to the dysfunction of actin was the formation of an aberrant wall over the whole surface of the isodiametrically-growing cell. This wall was of loose texture with protruding glucan microfibrils incompletely masked with amorphous matrix. It resembled the regenerating cell wall on the surfaces of yeast protoplasts. The localization of wall synthesis over the whole surface of temperature sensitive actin mutant cells was in accordance with an even distribution of submembranous actin in the form of patches (similarly to regenerating protoplasts). Delocalization of finger-like invaginations of the plasma membrane from the bud region to the whole surface of the growing cell was also found in mutant cells.


European Journal of Cell Biology | 2001

Microtubules and actin cytoskeleton in Cryptococcus neoformans compared with ascomycetous budding and fission yeasts.

Marie Kopecká; Miroslav Gabriel; Kanji Takeo; Masashi Yamaguchi; Augustin Svoboda; Misako Ohkusu; Kunihiko Hata; Soichi Yoshida

Actin cytoskeleton and microtubules were studied in a human fungal pathogen, the basidiomycetous yeast Cryptococcus neoformans (haploid phase of Filobasidiella neoformans), during its asexual reproduction by budding using fluorescence and electron microscopy. Staining with rhodamine-conjugated phalloidin revealed an F-actin cytoskeleton consisting of cortical patches, cables and cytokinetic ring. F-actin patches accumulated at the regions of cell wall growth, i. e. in sterigma, bud and septum. In mother cells evenly distributed F-actin patches were joined to F-actin cables, which were directed to the growing sterigma and bud. Some F-actin cables were associated with the cell nucleus. The F-actin cytokinetic ring was located in the bud neck, where the septum originated. Antitubulin TAT1 antibody revealed a microtubular cytoskeleton consisting of cytoplasmic and spindle microtubules. In interphase cells cytoplasmic microtubules pointed to the growing sterigma and bud. As the nucleus was translocated to the bud for mitosis, the cytoplasmic microtubules disassembled and were replaced by a short intranuclear spindle. Astral microtubules then emanated from the spindle poles. Elongation of the mitotic spindle from bud to mother cell preceded nuclear division, followed by cytokinesis (septum formation in the bud neck). Electron microscopy of ultrathin sections of chemically fixed and freeze-substituted cells revealed filamentous bundles directed to the cell cortex. The bundles corresponded in width to the actin microfilament cables. At the bud neck numerous ribosomes accumulated before septum synthesis. We conclude: (i) the topology of F-actin patches, cables and rings in C. neoformans resembles ascomycetous budding yeast Saccharomyces, while the arrangement of interphase and mitotic microtubules resembles ascomycetous fission yeast Schizosaccharomyces. The organization of the cytoskeleton of the mitotic nucleus, however, is characteristic of basidiomycetous yeasts. (ii) A specific feature of C. neoformans was the formation of a cylindrical sterigma, characterized by invasion of F-actin cables and microtubules, followed by accumulation of F-actin patches around its terminal region resulting in development of an isodiametrical bud.


Archives of Microbiology | 1986

Assembly of microfibrils in vivo and in vitro from (1»3)-β-d-glucan synthesized by protoplasts of Saccharomyces cerevisiae

Marie Kopecká; D. R. Kreger

Polymer chains of (1→3)-β-d-glucan were dissolved with 1 M NaOH at 4° C from native microfibrillar protoplast nets. The chains associated into microfibrils during NaOH neutralization or dialysis. In contrast to the native microfibrils which are of uniform width individually (10 to 20 nm) and arranged in flat bundles, the microfibrils formed in vitro showed no band formation and consisted of fibrous spindle-shaped subunits of variable width or loose elementary fibrils about 1.7 nm wide. X-ray diagrams of native nets indicated a fairly high crystallinity and were different for wet and dry specimens. They corresponded to those of paramylon. Precipitated glucans produced diagrams different from the former and revealing a lower crystallinity especially with the dry samples.The X-ray pattern, combined with other data, allowed the precipitated microfibrils to be identified as aggregates of molecular strands composed each of three intertwined helical glucan chains. Since these triple helical chains are about 1.7 nm wide the elementary fibrils of this width can represent only single triple-helical strands. These helices have 7 glucose residues per turn and therefore a low symmetry which explains the poor crystallizing properties. The 7 membered helix represents a basic difference with the well crystallized native glucan which is built of highly symmetrical triple helices with 6 glucose residues per turn. Since 61 helical conformation is not formed in vitro at normal temperatures its generation in vivo must be due to the action of synthesizing enzymes at the protoplast membrane. The intertwining of these helices and crystallization of the strands are determined by their symmetry and physical properties of the chains. This characterizes the native microfibrils as products of self-assembly of enzymegenerated 61 helices.


Microbiology | 1995

Actin cortical cytoskeleton and cell wall synthesis in regenerating protoplasts of the Saccharomyces cerevisiae actin mutant DBY 1693

Marie Kopecká; Miroslav Gabriel

The relationship between the actin cytoskeleton and cell wall synthesis was studied by light and electron microscopy in protoplasts of Saccharomyces cerevisiae DBY 1693 containing the act1-1 allele. Since protoplasting also disturbs the actin cytoskeleton, these mutant protoplasts had a double error in their actin cytoskeletons. In the period between the onset of wall synthesis and completion of the wall, protoplasts grown at the permissive temperature showed an even distribution of actin patches all over the surface on which a new cell wall was being synthesized. After wall completion, actin patches partially disappeared, but then re-appeared, accumulated in growth regions at the start of polarized growth. This was compared with the pattern of actin patches observed in intact temperature-sensitive actin mutant cells cultivated at the permissive temperature. Electron microscopy of freeze-etched replicas revealed finger-like invaginations of the plasma membrane in both the actin mutant cells and their protoplasts. These structures showed a very similar distribution to the actin patches detected by rhodamine phalloidin staining in the fluorescence microscope. A hypothesis is presented, explaining the role of actin patches/finger-like invaginations of the plasma membrane in the synthesis of beta-(1-->3)-D-glucan wall microfibrils in yeast cells.


Microbiology | 1998

Cytochalasin D interferes with contractile actin ring and septum formation in Schizosaccharomyces japonicus var. versatilis.

Miroslav Gabriel; Drahomír Horký; Augustin Svoboda; Marie Kopecká

The cells of Schizosaccharomyces japonicus var. versatilis responded to the presence of cytochalasin D (CD), an inhibitor of actin polymerization, by the disappearance of contractile actin rings (ARs) that had already formed and by inhibition of new ring formation. Actin cables disappeared. Actin patches remained preserved and became co-localized with regions of actual cell wall formation (at cell poles and at the site of septum development). Removal of the AR arrested formation of the primary septum and led to the production of aberrant septum protrusions in that region. Nuclear division was accomplished in the presence of CD but new ARs were not produced. The wall (septum) material was deposited in the form of a wide band at the inner surface of the lateral cell wall in the cell centre. This layer showed a thin fibrillar structure. The removal of CD resulted in rapid formation of new ARs in the equatorial region of the cells. This implies that the signal for AR localization was not abolished either by CD effects or by removal of an AR already formed. Some of the newly developed ARs showed atypical localization and orientation. In addition, redundant, subcortically situated actin bundles were produced. The removal of CD was quickly followed by the development of primary septa co-localized with ARs. Wall protrusions occurred co-localized with the redundant actin bundles. If these were completed in a circle, redundant septa developed. The AR is a mechanism which, in time and space, triggers cytokinesis by building a septum sequentially dependent on the AR. Aberrant septa were not capable of separating daughter cells. However, non-separated daughter cells subsequently gave rise to normal cells.


Experimental Cell Research | 1969

Interpretation of surface structures in frozen-etched protoplasts of yeasts

O. Nečas; Marie Kopecká; J. Brichta

Abstract The fine structure of protoplast surface of Saccharomyces cerevisiae was studied by means of the freeze-etching technique. The protoplasts frozen in an osmotic stabilizer are enveloped in a non-etchable layer. This layer is related to the artificial eucteticum formed during the freezing and vizualized after etching. In the replicas there were found prints in the non-etchable envelope which are complementary to the protoplast surface. The exposed protoplast surface reveals invaginations and is covered with globules of about 100 A in diameter. A part of them is arranged into a hexagonal pattern. Remnants of the original cell wall were not found and henceforth yeast protoplasts are to be considered as completely devoid of the cell wall.


Experimental Cell Research | 1968

The effect of cycloheximide (actidione) on cell wall synthesis in yeast protoplasts

Oldřich Nečas; Augustin Svoboda; Marie Kopecká

In yeast protoplasts formation of the formation of cell wall matrix can be blocked with cycloheximide in contrast to the formation of fibrillar groundwork of cell wall. This indicates that biosynthesis of these two structural components follows different pathways and may be controlled by different mechanisms.


Microbiology | 1974

A Method of Isolating Anucleated Yeast Protoplasts Unable to Synthesize the Glucan Fibrillar Component of the Wall

Marie Kopecká; Miroslav Gabriel; Oldřich Nečas

A mixture of nucleated and anucleated protoplasts was produced from log-phase Saccharomyces cerevisiae by the use of snail enzymes. The mixture was separated by centrifugation, and anucleated protoplasts were studied by means of light and electron microscopy. Anucleated protoplasts did not synthesize glucan fibrils even though they seemed to contain all other basic structures in their cytoplasm, and the structure of the plasma membrane was unchanged. This was in sharp contrast to ordinary nucleated protoplasts which synthesized glucan fibrils even after inhibition of protein synthesis by cycloheximide. The reason for this behaviour of anucleated protoplasts is not clear. Such anucleated yeast protoplasts represent the first example of uniform anucleated fungi produced by a reproducible method.

Collaboration


Dive into the Marie Kopecká's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge