Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie Kveiborg is active.

Publication


Featured researches published by Marie Kveiborg.


Journal of Cell Science | 2003

ADAM12 induces actin cytoskeleton and extracellular matrix reorganization during early adipocyte differentiation by regulating β1 integrin function

Nobuko Kawaguchi; Christina Sundberg; Marie Kveiborg; Behzad Moghadaszadeh; Meena Asmar; Nikolaj Dietrich; Charles Kumar Thodeti; Finn Cilius Nielsen; Peter Möller; Arthur M. Mercurio; Reidar Albrechtsen; Ulla M. Wewer

Changes in cell shape are a morphological hallmark of differentiation. In this study we report that the expression of ADAM12, a disintegrin and metalloprotease, dramatically affects cell morphology in preadipocytes, changing them from a flattened, fibroblastic appearance to a more rounded shape. We showed that the highest levels of ADAM12 mRNA were detected in preadipocytes at the critical stage when preadipocytes become permissive for adipogenic differentiation. Furthermore, as assessed by immunostaining, ADAM12 was transiently expressed at the cell surface concomitant with the reduced activity of β1 integrin. Co-immunoprecipitation studies indicated the formation of ADAM12/β1 integrin complexes in these preadipocytes. Overexpression of ADAM12 at the cell surface of 3T3-L1 preadipocytes achieved by transient transfection or retroviral transduction led to the disappearance of the extensive network of actin stress fibers that are characteristic of these cells, and its reorganization into a cortical network located beneath the cell membrane. The cells became more rounded, exhibited fewer vinculin-positive focal adhesions, and adhered less efficiently to fibronectin in attachment assays. Moreover, ADAM12-expressing cells were more prone to apoptosis, which could be prevented by treating the cells with β1-activating antibodies. A reduced and re-organized fibronectin-rich extracellular matrix accompanied these changes. In addition, β1 integrin was more readily extracted with Triton X-100 from cells overexpressing ADAM12 than from control cells. Collectively, these results show that surface expression of ADAM12 impairs the function of β1 integrins and, consequently, alters the organization of the actin cytoskeleton and extracellular matrix. These events may be necessary for early adipocyte differentiation.


Cancer Research | 2005

A Role for ADAM12 in Breast Tumor Progression and Stromal Cell Apoptosis

Marie Kveiborg; Camilla Fröhlich; Reidar Albrechtsen; Verena Tischler; Nikolaj Dietrich; Peter Holck; Pauliina Kronqvist; Fritz Rank; Arthur M. Mercurio; Ulla M. Wewer

As in developmental and regenerative processes, cell survival is of fundamental importance in cancer. Thus, a tremendous effort has been devoted to dissecting the molecular mechanisms involved in understanding the resistance of tumor cells to programmed cell death. Recently, the importance of stromal fibroblasts in tumor initiation and progression has been elucidated. Here, we show that stromal cell apoptosis occurs in human breast carcinoma but is only rarely seen in nonmalignant breast lesions. Furthermore, we show that ADAM12, a disintegrin and metalloprotease up-regulated in human breast cancer, accelerates tumor progression in a mouse breast cancer model. ADAM12 does not influence tumor cell proliferation but rather confers both decreased tumor cell apoptosis and increased stromal cell apoptosis. This dual role of ADAM12 in governing cell survival is underscored by the finding that ADAM12 increases the apoptotic sensitivity of nonneoplastic cells in vitro while rendering tumor cells more resistant to apoptosis. Together, these results show that the ability of ADAM12 to influence apoptosis may contribute to tumor progression.


The International Journal of Biochemistry & Cell Biology | 2008

Cellular roles of ADAM12 in health and disease

Marie Kveiborg; Reidar Albrechtsen; John R. Couchman; Ulla M. Wewer

ADAM12 belongs to the large family of ADAMs (a disintegrin and metalloproteases) and possesses extracellular metalloprotease and cell-binding functions, as well as intracellular signaling capacities. Interest in ADAM12 has increased recently because its expression is related to tumor progression and it is a potential biomarker for breast cancer. It is therefore important to understand ADAM12s functions. Many cellular roles for ADAM12 have been suggested. It is an active metalloprotease, and has been implicated in insulin-like growth factor (IGF) receptor signaling, through cleavage of IGF-binding proteins, and in epidermal growth factor receptor (EGFR) pathways, via ectodomain shedding of membrane-tethered EGFR ligands. These proteolytic events may regulate diverse cellular responses, such as altered cell differentiation, proliferation, migration, and invasion. ADAM12 may also regulate cell-cell and cell-extracellular matrix contacts through interactions with cell surface receptors - integrins and syndecans - potentially influencing the actin cytoskeleton. Moreover, ADAM12 interacts with several cytoplasmic signaling and adaptor molecules through its intracellular domain, thereby directly transmitting signals to or from the cell interior. These ADAM12-mediated cellular effects appear to be critical events in both biological and pathological processes. This review presents current knowledge on ADAM12 functions gained from in vitro and in vivo observations, describes ADAM12s role in both normal physiology and pathology, particularly in cancer, and discusses important areas for future investigation.


European Journal of Clinical Investigation | 2000

Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol.

M. Kassem; Marie Kveiborg; Eriksen Ef

BACKGROUND Transforming growth factor beta (TGF-beta) plays an important role in skeletal remodelling. However, few studies have examined its effects on cultured human osteoblasts. Our aim is to characterise the biological effects of TGF-beta1 on human osteoblasts and to examine the interaction between TGF-beta1 and calcitriol. DESIGN In vitro study employing two models of normal human osteoblasts: human bone marrow stromal cells [hMS/(OB)] containing osteoprogenitor cells and trabecular bone osteoblasts (hOB), which are mature osteoblasts. A reverse-transcriptase-polymerase-chain-reaction assay was employed to measure steady state mRNA levels of TGF-beta(s) isoforms and receptors. Effects of short-term treatment of TGF-beta1 on osteoblast proliferation and differentiation markers were assessed. The effect of cotreatment of calcitriol (10-8 M) and TGF-beta1 on osteoblast differentiation was also determined. RESULTS Both hMS(OB) and hOB cells expressed mRNA transcripts of TGF-beta1, TGF-beta2, TGF-beta 3, TGF-beta type I and type II receptors. TGF-beta 1 stimulated osteoblast proliferation in hMS(OB) and in hOB cultures. In hOB cultures, TGF-beta1 stimulated AP production and cotreatment with calcitriol induced a synergistic increase in AP levels to 250 +/- 61% of calcitriol-treated controls. Effects of TGF-beta1 and calcitriol were less pronounced in hMS(OB) cultures. TGF-beta1 inhibited collagen type I production in hMS(OB) cells and these effects were abolished in presence of calcitriol. In presence of calcitriol, TGF-beta1 increased collagen type I production in hOB cells. In both hOB and hMS(OB) cultures, TGF-beta1 inhibited osteocalcin production. CONCLUSIONS TGF-beta increases osteoblastic cell proliferation irrespective of the differentiation state. In presence of calcitriol, it initiates osteoblast cell differentiation and matrix formation. As TGF-beta inhibits osteocalcin production, other factors are necessary for inducing terminal differentiation of osteoblasts. The observed effects of TGF-beta on human osteoblasts in vitro may represent important regulatory steps in controlling osteoblast cell proliferation and differentiation in vivo.


Molecular and Cellular Biology | 2004

ΔFosB Induces Osteosclerosis and Decreases Adipogenesis by Two Independent Cell-Autonomous Mechanisms

Marie Kveiborg; G. Sabatakos; Riccardo Chiusaroli; Meilin Wu; William M. Philbrick; William C. Horne; Roland Baron

ABSTRACT Osteoblasts and adipocytes may develop from common bone marrow mesenchymal precursors. Transgenic mice overexpressing ΔFosB, an AP-1 transcription factor, under the control of the neuron-specific enolase (NSE) promoter show both markedly increased bone formation and decreased adipogenesis. To determine whether the two phenotypes were linked, we targeted overexpression of ΔFosB in mice to the osteoblast by using the osteocalcin (OG2) promoter. OG2-ΔFosB mice demonstrated increased osteoblast numbers and an osteosclerotic phenotype but normal adipocyte differentiation. This result firmly establishes that the skeletal phenotype is cell autonomous to the osteoblast lineage and independent of adipocyte formation. It also strongly suggests that the decreased fat phenotype of NSE-ΔFosB mice is independent of the changes in the osteoblast lineage. In vitro, overexpression of ΔFosB in the preadipocytic 3T3-L1 cell line had little effect on adipocyte differentiation, whereas it prevented the induction of adipogenic transcription factors in the multipotential stromal cell line ST2. Also, ΔFosB isoforms bound to and altered the DNA-binding capacity of C/EBPβ. Thus, the inhibitory effect of ΔFosB on adipocyte differentiation appears to occur at early stages of stem cell commitment, affecting C/EBPβ functions. It is concluded that the changes in osteoblast and adipocyte differentiation in ΔFosB transgenic mice result from independent cell-autonomous mechanisms.


Journal of Biological Chemistry | 2006

ADAM12 Is a Four-leafed Clover THE EXCISED PRODOMAIN REMAINS BOUND TO THE MATURE ENZYME

Ulla M. Wewer; Matthias Mörgelin; Peter Holck; Jonas Jacobsen; Magnus C. Lydolph; Anders H. Johnsen; Marie Kveiborg; Reidar Albrechtsen

The ADAMs (a disintegrin and metalloprotease) comprise a family of multidomain proteins with metalloprotease, cell adhesion, and signaling activities. Human ADAM12, which is implicated in diseases such as cancer, is expressed in two splice forms, the transmembrane ADAM12-L and the shorter and soluble ADAM12-S. ADAM12 is synthesized as a zymogen with the prodomain keeping the metalloprotease inactive through a cysteine-switch mechanism. Maturation and activation of the protease involves the cleavage of the prodomain in the trans-Golgi or possibly at the cell surface by a furin-peptidase. The aim of the present study was to determine the fate of the prodomain following furin cleavage. Here we demonstrate that, following cleavage of the human ADAM12-S prodomain in the trans-Golgi by a furin-peptidase, the prodomain remains non-covalently associated with the mature molecule. Accordingly, both the 68-kDa mature form of ADAM12-S and the 25-kDa prodomain could be detected using domain-specific antisera in immunoprecipitation and Western blot analyses of human serum ADAM12 and purified recombinant human ADAM12. Using electron microscopy after negative staining we have furthermore obtained the first visualization of a full-length ADAM molecule, human ADAM12-S, and report that it appears to be a compact clover composed of four globular domains, one of which is the prodomain. Finally, our data demonstrate that the presence of the metalloprotease domain appears to be sufficient for the prodomain to remain associated with the mature ADAM12-S. Thus, we conclude that the prodomain of human ADAM12-S is an integral domain of the mature molecule and as such might have specific biological functions in the extracellular space.


Journal of Biological Chemistry | 2004

Regulation of ADAM12 cell-surface expression by protein kinase C epsilon

Christina Sundberg; Charles Kumar Thodeti; Marie Kveiborg; Christer Larsson; Peter J. Parker; Reidar Albrechtsen; Ulla M. Wewer

The ADAM (a disintegrin and metalloprotease) family consists of multidomain cell-surface proteins that have a major impact on cell behavior. These transmembrane-anchored proteins are synthesized as proforms that have (from the N terminus): a prodomain; a metalloprotease-, disintegrin-like-, cysteine-rich, epidermal growth factor-like, and transmembrane domain; and a cytoplasmic tail. The 90-kDa mature form of human ADAM12 is generated in the trans-Golgi through cleavage of the prodomain by a furin-peptidase and is stored intracellularly until translocation to the cell surface as a constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) ϵ induces ADAM12 translocation to the cell surface and that catalytic activity of PKCϵ is required for this translocation. The following results support this conclusion: 1) treatment of cells with 0.1 μm phorbol 12-myristate 13-acetate (PMA) enhanced ADAM12 cell-surface immunostaining, 2) ADAM12 and PKCϵ could be co-immunoprecipitated from membrane-enriched fractions of PMA-treated cells, 3) RD cells transfected with EGFP-tagged, myristoylated PKCϵ expressed more ADAM12 at the cell surface than did non-transfected cells, and 4) RD cells transfected with a kinase-inactive PKCϵ mutant did not exhibit ADAM12 cell-surface translocation upon PMA treatment. Finally, we demonstrate that the C1 and C2 domains of PKCϵ both contain a binding site for ADAM12. These studies show that PKCϵ plays a critical role in the regulation of ADAM12 cell-surface expression.


Mechanisms of Ageing and Development | 1999

Telomere shortening during aging of human osteoblasts in vitro and leukocytes in vivo: lack of excessive telomere loss in osteoporotic patients

Marie Kveiborg; Moustapha Kassem; Bente Langdahl; Eriksen Ef; Brian F.C. Clark; Suresh I. S. Rattan

We have compared the telomere length, as assessed by Southern analysis, of telomere restriction fragments (TRFs) generated by RsaI/HinfI digestion of genomic DNA in: (i) in vitro cultured human trabecular osteoblasts undergoing cellular aging; and (ii) peripheral blood leukocytes (PBL) obtained from three groups of women: young (aged 20-26 years, n = 15), elderly (aged 48-85 years, n = 15) and osteoporotic (aged 52-81 years, n = 14). The mean TRF length in human osteoblasts undergoing aging in vitro decreased from an average of 9.32 kilobasepairs (kb) in middle-aged cells to an average of 7.80 kb in old cells. The rate of TRF shortening was about 100 bp per population doubling, which is similar to what has been reported for other cell types, such as human fibroblasts. Furthermore, there was a 30% decline in the total amount of telomeric DNA in senescent osteoblasts as compared with young cells. In the case of PBL, TRF length in the DNA extracted from young women was slightly longer (6.76 +/- 0.64 kb) than that from a group of elderly women (6.42 +/- 0.71 kb). A comparison of TRFs in the DNA extracted from the PBL from osteoporotic patients and from age-matched controls did not show any significant differences (6.47 +/- 0.94 versus 6.42 +/- 0.71 kb, respectively). Therefore, using TRF length as a marker for cellular aging in vitro and in vivo, our data comparing TRFs from osteoporotic patients and age-matched controls do not support the notion of the occurrence of a generalized premature cellular aging in osteoporotic patients.


PLOS ONE | 2011

PKCα and PKCδ Regulate ADAM17-Mediated Ectodomain Shedding of Heparin Binding-EGF through Separate Pathways

Marie Kveiborg; Rachael Instrell; Christina Rowlands; Michael Howell; Peter J. Parker

Epidermal growth factor receptor (EGFR) signalling is initiated by the release of EGFR-ligands from membrane-anchored precursors, a process termed ectodomain shedding. This proteolytic event, mainly executed by A Disintegrin And Metalloproteases (ADAMs), is regulated by a number of signal transduction pathways, most notably those involving protein kinase C (PKC). However, the molecular mechanisms of PKC-dependent ectodomain shedding of EGFR-ligands, including the involvement of specific PKC isoforms and possible functional redundancy, are poorly understood. To address this issue, we employed a cell-based system of PMA-induced PKC activation coupled with shedding of heparin binding (HB)-EGF. In agreement with previous studies, we demonstrated that PMA triggers a rapid ADAM17-mediated release of HB-EGF. However, PMA-treatment also results in a protease-independent loss of cell surface HB-EGF. We identified PKCα as the key participant in the activation of ADAM17 and suggest that it acts in parallel with a pathway linking PKCδ and ERK activity. While PKCα specifically regulated PMA-induced shedding, PKCδ and ERK influenced both constitutive and inducible shedding by apparently affecting the level of HB-EGF on the cell surface. Together, these findings indicate the existence of multiple modes of regulation controlling EGFR-ligand availability and subsequent EGFR signal transduction.


Experimental Gerontology | 2000

Changes in the insulin-like growth factor-system may contribute to in vitro age-related impaired osteoblast functions

Marie Kveiborg; A Flyvbjerg; Suresh I. S. Rattan; Moustapha Kassem

Age-related bone loss is thought to be due to impaired osteoblast functions. Insulin-like growth factors (IGFs) have been shown to be important stimulators of bone formation and osteoblast activities in vitro and in vivo. We tested the hypothesis that in vitro osteoblast senescence is associated with changes in components of the IGF-system including IGF-I, IGF-II, IGF-binding proteins (IGFBPs) and IGFBP-specific proteases. We employed a human diploid osteoblast cell line obtained from trabecular bone explants and that exhibit typical characteristics of in vitro senescence during serial subculturing. Using a non-competitive reverse-transcriptase polymerase-chain reaction (RT-PCR) assay, we found that the constitutive level of IGF-I mRNA decreased progressively to 49.9 +/- 4.9% in old osteoblasts as compared to the levels found in the young cells. No age-related change was found in IGF-II steady-state mRNA levels. Changes in IGFBPs gene expression and protein production were assessed using Northern blot analysis and Western ligand blotting (WLB), respectively. IGFBP-3 mRNA levels decreased to 30% and protein production to 16% in aged osteoblasts as compared to levels found in young cells. We also found age-related decreases in mRNA levels of both IGFBP-4 and IGFBP-5 to 70% and 60% in aged osteoblasts, respectively, compared to young cells. While IGFBP-5 protein was not detected by WLB, IGFBP-4 protein production showed a biphasic change with 50% decrease in middle-aged cells and a subsequent increase in aged osteoblasts to levels similar to those in young osteoblasts. We found an age-related increase in the immunoreactive levels of IGFBP-4 protease, however, no detectable IGFBP-4 or IGFBP-3 protease activities in conditioned media from osteoblast cultures were observed. Our findings demonstrate that osteoblast aging is associated with impaired production of the stimulatory components of the IGF-system, that may be a mechanism contributing to age-related decline in osteoblast functions.

Collaboration


Dive into the Marie Kveiborg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulla M. Wewer

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorte Stautz

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge