Marie L. Hale
University of Canterbury
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie L. Hale.
Allentoft, M.E. <http://researchrepository.murdoch.edu.au/view/author/Allentoft, Morten.html>, Collins, M., Harker, D., Haile, J. <http://researchrepository.murdoch.edu.au/view/author/Haile, James.html>, Oskam, C.L. <http://researchrepository.murdoch.edu.au/view/author/Oskam, Charlotte.html>, Hale, M.L., Campos, P. F., Samaniego, J. A., Gilbert, T.P.M., Willerslev, E., Zhang, G., Scofield, R. P., Holdaway, R. N. and Bunce, M. <http://researchrepository.murdoch.edu.au/view/author/Bunce, Michael.html> (2012) The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society B: Biological Sciences, 279 (1748). pp. 4724-4733. | 2012
Morten E. Allentoft; Matthew J. Collins; David Harker; James Haile; Charlotte L. Oskam; Marie L. Hale; Paula F. Campos; José Alfredo Samaniego; M. Thomas P. Gilbert; Guojie Zhang; R. Paul Scofield; Richard N. Holdaway; Michael Bunce
Claims of extreme survival of DNA have emphasized the need for reliable models of DNA degradation through time. By analysing mitochondrial DNA (mtDNA) from 158 radiocarbon-dated bones of the extinct New Zealand moa, we confirm empirically a long-hypothesized exponential decay relationship. The average DNA half-life within this geographically constrained fossil assemblage was estimated to be 521 years for a 242 bp mtDNA sequence, corresponding to a per nucleotide fragmentation rate (k) of 5.50 × 10–6 per year. With an effective burial temperature of 13.1°C, the rate is almost 400 times slower than predicted from published kinetic data of in vitro DNA depurination at pH 5. Although best described by an exponential model (R2 = 0.39), considerable sample-to-sample variance in DNA preservation could not be accounted for by geologic age. This variation likely derives from differences in taphonomy and bone diagenesis, which have confounded previous, less spatially constrained attempts to study DNA decay kinetics. Lastly, by calculating DNA fragmentation rates on Illumina HiSeq data, we show that nuclear DNA has degraded at least twice as fast as mtDNA. These results provide a baseline for predicting long-term DNA survival in bone.
PLOS ONE | 2012
Marie L. Hale; Theresa M. Burg; Tammy E. Steeves
One of the most common questions asked before starting a new population genetic study using microsatellite allele frequencies is “how many individuals do I need to sample from each population?” This question has previously been answered by addressing how many individuals are needed to detect all of the alleles present in a population (i.e. rarefaction based analyses). However, we argue that obtaining accurate allele frequencies and accurate estimates of diversity are much more important than detecting all of the alleles, given that very rare alleles (i.e. new mutations) are not very informative for assessing genetic diversity within a population or genetic structure among populations. Here we present a comparison of allele frequencies, expected heterozygosities and genetic distances between real and simulated populations by randomly subsampling 5–100 individuals from four empirical microsatellite genotype datasets (Formica lugubris, Sciurus vulgaris, Thalassarche melanophris, and Himantopus novaezelandia) to create 100 replicate datasets at each sample size. Despite differences in taxon (two birds, one mammal, one insect), population size, number of loci and polymorphism across loci, the degree of differences between simulated and empirical dataset allele frequencies, expected heterozygosities and pairwise FST values were almost identical among the four datasets at each sample size. Variability in allele frequency and expected heterozygosity among replicates decreased with increasing sample size, but these decreases were minimal above sample sizes of 25 to 30. Therefore, there appears to be little benefit in sampling more than 25 to 30 individuals per population for population genetic studies based on microsatellite allele frequencies.
BioTechniques | 2009
Morten E. Allentoft; Stephan C. Schuster; Richard N. Holdaway; Marie L. Hale; Emma McLay; Charlotte L. Oskam; M. Thomas P. Gilbert; Peter B. S. Spencer; Michael Bunce
Genetic variation in microsatellites is rarely examined in the field of ancient DNA (aDNA) due to the low quantity of nuclear DNA in the fossil record together with the lack of characterized nuclear markers in extinct species. 454 sequencing platforms provide a new high-throughput technology capable of generating up to 1 gigabases per run as short (200-400-bp) read lengths. 454 data were generated from the fossil bone of an extinct New Zealand moa (Aves: Dinornithiformes). We identified numerous short tandem repeat (STR) motifs, and here present the successful isolation and characterization of one polymorphic microsatellite (Moa_MS2). Primers designed to flank this locus amplified all three moa species tested here. The presented method proved to be a fast and efficient way of identifying microsatellite markers in ancient DNA templates and, depending on biomolecule preservation, has the potential of enabling high-resolution population genetic studies of extinct taxa. As sequence read lengths of the 454 platforms and its competitors (e.g., the SOLEXA and SOLiD platforms) increase, this approach will become increasingly powerful in identifying microsatellites in extinct (and extant) organisms, and will afford new opportunities to study past biodiversity and extinction processes.
Journal of Evolutionary Biology | 2006
Sc Roberts; Marie L. Hale; Marion Petrie
There is currently considerable interest in testing the effects of genetic compatibility and heterozygosity on animal mate preferences. Evidence for either effect is rapidly accumulating, although results are not always clear‐cut. However, correlations between mating preferences and either genetic similarity or heterozygosity are usually tested independently, and the possibility that similarity and heterozygosity may be confounded has rarely been taken into account. Here we show that measures of genetic similarity (allele sharing, relatedness) may be correlated with heterozygosity, using data from 441 human individuals genotyped at major loci in the major histocompatibility complex, and 281 peafowl (Pavo cristatus) individuals genotyped at 13 microsatellite loci. We show that average levels of allele sharing and relatedness are each significantly associated with heterozygosity in both humans and peafowl, that these relationships are influenced by the level of polymorphism, and that these similarity measures may correlate with heterozygosity in qualitatively different ways. We discuss the implications of these inter‐relationships for interpretation of mate choice studies. It has recently become apparent that mating preferences for ‘good genes’ and ‘compatible genes’ may introduce discordant choice amongst individuals, since the optimal mate for one trait may not be optimal for the other, and our results are consistent with this idea. The inter‐relationship between these measures of genetic quality also carries implications for the way in which mate choice studies are designed and interpreted, and generates predictions that can be tested in future research.
PLOS ONE | 2011
Morten E. Allentoft; Charlotte L. Oskam; Jayne Houston; Marie L. Hale; M. Thomas P. Gilbert; Morten Rasmussen; Peter B. S. Spencer; C. Jacomb; Richard N. Holdaway; Michael Bunce
We present the first set of microsatellite markers developed exclusively for an extinct taxon. Microsatellite data have been analysed in thousands of genetic studies on extant species but the technology can be problematic when applied to low copy number (LCN) DNA. It is therefore rarely used on substrates more than a few decades old. Now, with the primers and protocols presented here, microsatellite markers are available to study the extinct New Zealand moa (Aves: Dinornithiformes) and, as with single nucleotide polymorphism (SNP) technology, the markers represent a means by which the field of ancient DNA can (preservation allowing) move on from its reliance on mitochondrial DNA. Candidate markers were identified using high throughput sequencing technology (GS-FLX) on DNA extracted from fossil moa bone and eggshell. From the ‘shotgun’ reads, >60 primer pairs were designed and tested on DNA from bones of the South Island giant moa (Dinornis robustus). Six polymorphic loci were characterised and used to assess measures of genetic diversity. Because of low template numbers, typical of ancient DNA, allelic dropout was observed in 36–70% of the PCR reactions at each microsatellite marker. However, a comprehensive survey of allelic dropout, combined with supporting quantitative PCR data, allowed us to establish a set of criteria that maximised data fidelity. Finally, we demonstrated the viability of the primers and the protocols, by compiling a full Dinornis microsatellite dataset representing fossils of c. 600–5000 years of age. A multi-locus genotype was obtained from 74 individuals (84% success rate), and the data showed no signs of being compromised by allelic dropout. The methodology presented here provides a framework by which to generate and evaluate microsatellite data from samples of much greater antiquity than attempted before, and opens new opportunities for ancient DNA research.
Journal of Molecular Evolution | 2004
Marie L. Hale; Anne M. Borland; Mats H. G. Gustafsson; Kirsten Wolff
Chloroplast DNA sequences and microsatellites are useful tools for phylogenetic as well as population genetic analyses of plants. Chloroplast microsatellites tend to be less variable than nuclear microsatellites and therefore they may not be as powerful as nuclear microsatellites for within-species population analysis. However, chloroplast microsatellites may be useful for phylogenetic analysis between closely related taxa when more conventional loci, such as ITS or chloroplast sequence data, are not variable enough to resolve phylogenetic relationships in all clades. To determine the limits of chloroplast microsatellites as tools in phylogenetic analyses, we need to understand their evolution. Thus, we examined and compared phylogenetic relationships of species within the genus Clusia, using both chloroplast sequence data and variation at seven chloroplast microsatellite loci. Neither ITS nor chloroplast sequences were variable enough to resolve relationships within some sections of the genus, yet chloroplast microsatellite loci were too variable to provide any useful phylogenetic information. Size homoplasy was apparent, caused by base substitutions within the microsatellite, base substitutions in the flanking regions, indels in the flanking regions, multiple microsatellites within a fragment, and forward/reverse mutations of repeat length resulting in microsatellites of identical base composition that were not identical by descent.
Journal of Evolutionary Biology | 2009
Marie L. Hale; M. Verduijn; Anders Pape Møller; Kirsten Wolff; Marion Petrie
Peacocks are a classic example of sexual selection, where females preferentially mate with males who have longer, more elaborate trains. One of the central hypotheses of sexual selection theory is that large or elaborate male ‘ornaments’ may signal high genetic quality (good genes). Good genes are thought to be those associated with disease resistance and as diversity at the major histocompatibility complex (MHC) has been shown to equate to superior immune responses, we test whether the peacock’s train reveals genetic diversity at the MHC. We demonstrate via a captive breeding experiment that train length of adult males reflects genetic diversity at the MHC while controlling for genome‐wide diversity and that peahens lay more, and larger, eggs for males with a more diverse MHC, but not for males with longer trains. Our results suggest that females are assessing and responding to male quality in terms of MHC diversity, but this assessment does not appear to be via train length, despite the fact that train length reflects MHC diversity.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Morten E. Allentoft; Rasmus Heller; Charlotte L. Oskam; Eline D. Lorenzen; Marie L. Hale; M.T.P. Gilbert; C. Jacomb; Richard N. Holdaway; Michael Bunce
Significance In New Zealand, nine species of moa (large, wingless ratite birds) went extinct shortly after Polynesian settlement. In this study, we characterize the gene pools of four moa species during the final 4,000 y of their existence and gain new insights into moa biology and their population sizes. Our analyses show that moa populations were large and viable prior to human arrival in New Zealand, and their demise therefore represents a striking example of human overexploitation of megafauna. The extinction of New Zealands moa (Aves: Dinornithiformes) followed the arrival of humans in the late 13th century and was the final event of the prehistoric Late Quaternary megafauna extinctions. Determining the state of the moa populations in the pre-extinction period is fundamental to understanding the causes of the event. We sampled 281 moa individuals and combined radiocarbon dating with ancient DNA analyses to help resolve the extinction debate and gain insights into moa biology. The samples, which were predominantly from the last 4,000 years preceding the extinction, represent four sympatric moa species excavated from five adjacent fossil deposits. We characterized the moa assemblage using mitochondrial DNA and nuclear microsatellite markers developed specifically for moa. Although genetic diversity differed significantly among the four species, we found that the millennia preceding the extinction were characterized by a remarkable degree of genetic stability in all species, with no loss of heterozygosity and no shifts in allele frequencies over time. The extinction event itself was too rapid to be manifested in the moa gene pools. Contradicting previous claims of a decline in moa before Polynesian settlement in New Zealand, our findings indicate that the populations were large and stable before suddenly disappearing. This interpretation is supported by approximate Bayesian computation analyses. Our analyses consolidate the disappearance of moa as the most rapid, human-facilitated megafauna extinction documented to date.
Molecular Ecology | 2010
Tammy E. Steeves; Richard F. Maloney; Marie L. Hale; Jason M. Tylianakis; Neil J. Gemmell
Hybridization facilitated by human activities has dramatically altered the evolutionary trajectories of threatened taxa around the globe. Whereas introduced mammalian predators and widespread habitat loss and degradation clearly imperil the recovery and survival of the New Zealand endemic black stilt or kakī (Himantopus novaezelandiae), the risk associated with hybridization between this critically endangered endemic and its self-introduced congener, the pied stilt or poaka (Himantopus himantopus leucocephalus) is less clear. Here, we combine Bayesian admixture analyses of microsatellite data with mitochondrial DNA sequence data to assess the levels of hybridization and introgression between kakī and poaka. We show that birds classified as hybrids on the basis of adult plumage are indeed of hybrid origin and that hybridization between kakī and poaka is both extensive and bidirectional. Despite this, we found almost no evidence for introgression from poaka to kakī, thus negating the popular belief that kakī represent a hybrid swarm. To our knowledge, ours represents the first comprehensive study to document a lack of widespread introgression for a species at risk despite a recent history of extensive bidirectional human-induced hybridization. We attribute this rather surprising result, in part, to reduced reproductive success in female hybrids combined with a transient male-biased kakī sex ratio. To maximize the evolutionary potential of kakī, we use these data to recommend conservation management activities aimed to maintain the genetic integrity and to maximize the genetic diversity of this iconic rare bird.
Conservation Genetics | 2004
Marie L. Hale; Peter W. W. Lurz; Kirsten Wolff
British S. vulgaris are classified as aseparate subspecies, S. v. leucourus, tomainland Europe. While S. vulgaris is notunder threat across most of its Eurasian range,in Britain, Ireland and Italy populations aredeclining, mainly due to the introduction ofthe American grey squirrel (S.carolinensis). In this study, we conducted anextensive survey of mitochondrial DNA variationin British S. vulgaris populations and apreliminary survey of continental Europeanpopulations. Our main aims were to determinethe extent to which any populations of S.vulgaris in Britain are partially or whollythe product of artificial translocation of redsquirrels from continental Europe, and whethercontinental population variation will provideinformation on post-glacial reafforestationpatterns in Europe. We found that the majorityof extant populations of British S.vulgaris are of continental ancestry, manywith a very recent (last 40 years) Scandinavianancestry. The Scandinavian haplotype hasrapidly become the most dominant innortheastern Britain, despite not appearing innorthern English populations until 1966. Thissuggests that these squirrels may have anadaptive advantage in the non-native sprucedominated conifer plantations of northernEngland. Our preliminary examination ofcontinental populations demonstrated that theyare sufficiently differentiated to allow aphylogeographic study of this species.