Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Noële Croteau is active.

Publication


Featured researches published by Marie-Noële Croteau.


Nanotoxicology | 2011

A novel approach reveals that zinc oxide nanoparticles are bioavailable and toxic after dietary exposures

Marie-Noële Croteau; Agnieszka Dybowska; Samuel N. Luoma; Eugenia Valsami-Jones

Abstract If engineered nanomaterials are released into the environment, some are likely to end up associated with the food of animals due to aggregation and sorption processes. However, few studies have considered dietary exposure of nanomaterials. Here we show that zinc (Zn) from isotopically modified 67ZnO particles is efficiently assimilated by freshwater snails when ingested with food. The 67Zn from nano-sized 67ZnO appears as bioavailable as 67Zn internalized by diatoms. Apparent agglomeration of the zinc oxide (ZnO) particles did not reduce bioavailability, nor preclude toxicity. In the diet, ZnO nanoparticles damage digestion: snails ate less, defecated less and inefficiently processed the ingested food when exposed to high concentrations of ZnO. It was not clear whether the toxicity was due to the high Zn dose achieved with nanoparticles or to the ZnO nanoparticles themselves. Further study of exposure from nanoparticles in food would greatly benefit assessment of ecological and human health risks.


Environmental Toxicology and Chemistry | 2005

Delineating copper accumulation pathways for the freshwater bivalve Corbicula using stable copper isotopes.

Marie-Noële Croteau; Samuel N. Luoma

Delineation of metal uptake routes in aquatic invertebrates is critical for characterizing bioaccumulation dynamics and assessing risks associated with metal exposure. Here we demonstrate that Cu stable isotopic ratios can be manipulated in both exposure media and algae to determine the efflux rate constant (ke) and to estimate Cu assimilation efficiency (AE) from ingested food in a freshwater bivalve (Corbicula fluminea). The Cu AE in Corbicula fed 65Cu-spiked Cryptomonas ozolini was 38%. Copper uptake routes had no significant influence on efflux; ke of 0.004 per day characterized the slowest component of efflux following short-term exposures to 65Cu in water or in both food and water. Incorporation of the physiological parameters for dietary and dissolved uptake as well as rate constants of loss into a bioaccumulation model allowed for assessing the relative contribution of water and food as Cu sources. At [65Cu2+] of 6.7 microg/L, Corbicula accumulated twice as much Cu from diet as from water. In most freshwater systems, the dietary pathway is likely to act as the major Cu uptake route for Corbicula. Extrapolation of our laboratory results to the San Francisco Bay-Delta (California, USA) indicated that our biodynamic model and the laboratory-derived parameters for dietary 65Cu uptake provided a realistic representation of the processes involved in Cu accumulation by the bivalve Corbicula.


Chemosphere | 2014

In vivo retention of ingested Au NPs by Daphnia magna: No evidence for trans-epithelial alimentary uptake

Farhan R. Khan; Gabrielle M. Kennaway; Marie-Noële Croteau; Agnieszka Dybowska; Brian D. Smith; António Nogueira; Philip S. Rainbow; Samuel N. Luoma; Eugenia Valsami-Jones

In vivo studies with Daphnia magna remain inconclusive as to whether engineered nanoparticles (NPs) are internalized into tissues after ingestion. Here we used a three-pronged approach to study the in vivo retention and efflux kinetics of 20 nm citrate stabilized Au NPs ingested by this key aquatic species. Daphnids were exposed to suspended particles (600 μg L(-1)) for 5 h after which they were depurated for 24 h in clean water containing algae. Light microscopy was used to follow the passage of Au NPs through the gastrointestinal tract, Au body burdens were determined by ICP-MS (inductively coupled plasma mass spectrometry), and transmission electron microscopy (TEM) was used to examine the presence and distribution of Au NPs in tissues. Results revealed that the elimination of Au NPs was bi-phasic. The fast elimination phase lasted<1h and the rate constant at which Au (of Au NPs) was eliminated was 1.12 ± 0.34 h(-1) (±SE) which accounted for ∼75% of the ingested Au. The remaining ∼25% of the ingested Au NPs was eliminated at a 100-fold slower rate. TEM analysis revealed that Au NPs in the midgut were in close proximity to the peritrophic membrane after 1 and 24h of depuration. There were no observations of Au NP uptake at the microvilli. Thus, although Au NPs were retained in the gut lumen, there was no observable internalization into the gut epithelial cells. Similar to carbon nanotubes and CuO NPs, our findings indicate that in daphnids the in vivo retention of Au NPs does not necessarily result in their internalization.


Environmental Science & Technology | 2014

Bioaccumulation and toxicity of CuO nanoparticles by a freshwater invertebrate after waterborne and dietborne exposures

Marie-Noële Croteau; Superb K. Misra; Samuel N. Luoma; Eugenia Valsami-Jones

The incidental ingestion of engineered nanoparticles (NPs) can be an important route of uptake for aquatic organisms. Yet, knowledge of dietary bioavailability and toxicity of NPs is scarce. Here we used isotopically modified copper oxide ((65)CuO) NPs to characterize the processes governing their bioaccumulation in a freshwater snail after waterborne and dietborne exposures. Lymnaea stagnalis efficiently accumulated (65)Cu after aqueous and dietary exposures to (65)CuO NPs. Cu assimilation efficiency and feeding rates averaged 83% and 0.61 g g(-1) d(-1) at low exposure concentrations (<100 nmol g(-1)), and declined by nearly 50% above this concentration. We estimated that 80-90% of the bioaccumulated (65)Cu concentration in L. stagnalis originated from the (65)CuO NPs, suggesting that dissolution had a negligible influence on Cu uptake from the NPs under our experimental conditions. The physiological loss of (65)Cu incorporated into tissues after exposures to (65)CuO NPs was rapid over the first days of depuration and not detectable thereafter. As a result, large Cu body concentrations are expected in L. stagnalis after exposure to CuO NPs. To the degree that there is a link between bioaccumulation and toxicity, dietborne exposures to CuO NPs are likely to elicit adverse effects more readily than waterborne exposures.


Environmental Toxicology and Chemistry | 2011

Bioaccumulation dynamics and exposure routes of Cd and Cu among species of aquatic mayflies

Daniel J. Cain; Marie-Noële Croteau; Samuel N. Luoma

Consumption of periphyton is a potentially important route of metal exposure to benthic invertebrate grazers. The present study examined the bioaccumulation kinetics of dissolved and dietary Cd and Cu in five species of mayflies (class Insecta). Artificial stream water and benthic diatoms were separately labeled with enriched stable metal isotopes to determine physiological rate constants used by a biokinetic bioaccumulation model. The model was employed to simulate the effects of metal partitioning between water and food, expressed as the bioconcentration factor (BCF), as well as ingestion rate (IR) and metal assimilation efficiency of food (AE), on the relative importance of water and food to metal bioaccumulation. For all test species, the contribution of dietary uptake of Cd and Cu increased with BCF. For a given BCF, the contribution of food to the body burden increased with k(uf) , the metal uptake rate constant from food that combined variation in IR and AE. To explore the relative importance of water and diet exposure routes under field conditions, we used estimated site-specific aqueous free-ion concentrations to model Cd and Cu accumulation from aqueous exposure, exclusively. The predicted concentrations accounted for less than 5% of the observed concentrations, implying that most bioaccumulated metal was acquired from food. At least for the taxa considered in this study, we conclude that consumption of metal-contaminated periphyton can result in elevated metal body burdens and potentially increase the risk of metal toxicity.


Science of The Total Environment | 2014

Toxicity and accumulation of silver nanoparticles during development of the marine polychaete Platynereis dumerilii

Javier García-Alonso; Neus Rodriguez-Sanchez; Superb K. Misra; Eugenia Valsami-Jones; Marie-Noële Croteau; Samuel N. Luoma; Philip S. Rainbow

Pollutants affecting species at the population level generate ecological instability in natural systems. The success of early life stages, such as those of aquatic invertebrates, is highly affected by adverse environmental conditions. Silver released into the environment from emerging nanotechnology represents such a threat. Sediments are sinks for numerous pollutants, which aggregate and/or associate with depositing suspended particles. Deposit feeder such as the annelid Platynereis dumerilii, which has a large associated literature on its development, is an excellent model organism for exposure studies in coastal environments. We exposed eggs, larvae, juveniles and adults of P. dumerilii to various concentrations of citrate (cit-Ag NPs) or humic acid (HA-Ag NPs) capped silver nanoparticles (Ag NPs) as well to dissolved Ag (added as AgNO3). We showed that mortality and abnormal development rate increased with younger life stages. While adults and juvenile were the most tolerant life stages, fertilized eggs were highly sensitive to AgNO3, cit-Ag NPs and HA-Ag NPs. Exposures to HA-Ag NPs triggered the highest cute toxicity responses in P. dumerilii and in most cases both Ag NPs were more toxic than AgNO3. Uptake rate of HA-Ag NPs in adult worms was also higher than from other Ag forms, consistent with toxicity to other life stages. The early stages of the life cycle of marine coastal organisms are more affected by Ag NPs than the juvenile or adult life stages, indicating that exposure experiments at the larval level contribute to realistic eco-toxicological studies in aquatic environments.


Environmental Chemistry | 2014

Isotopically modified silver nanoparticles to assess nanosilver bioavailability and toxicity at environmentally relevant exposures

Marie-Noële Croteau; Agnieszka Dybowska; Samuel N. Luoma; Superb K. Misra; Eugenia Valsami-Jones

Environmental context Predicting the environmental implications of nanotechnology is complex in part because of the difficulty in studying nanoparticle uptake in organisms at environmentally realistic exposures. Typically, high exposure concentrations are needed to detect accumulation and effects. We use labelled Ag nanoparticles to determine whether Ag bioaccumulation responses are linear over concentrations likely to occur in the environment, and whether concentration-dependent changes in agglomeration and dissolution affect bioavailability. Abstract A major challenge in understanding the environmental implications of nanotechnology lies in studying nanoparticle uptake in organisms at environmentally realistic exposure concentrations. Typically, high exposure concentrations are needed to trigger measurable effects and to detect accumulation above background. But application of tracer techniques can overcome these limitations. Here we synthesised, for the first time, citrate-coated Ag nanoparticles using Ag that was 99.7% 109Ag. In addition to conducting reactivity and dissolution studies, we assessed the bioavailability and toxicity of these isotopically modified Ag nanoparticles (109Ag NPs) to a freshwater snail under conditions typical of nature. We showed that accumulation of 109Ag from 109Ag NPs is detectable in the tissues of Lymnaea stagnalis after 24-h exposure to aqueous concentrations as low as 6ngL–1 as well as after 3h of dietary exposure to concentrations as low as 0.07μgg–1. Silver uptake from unlabelled Ag NPs would not have been detected under similar exposure conditions. Uptake rates of 109Ag from 109Ag NPs mixed with food or dispersed in water were largely linear over a wide range of concentrations. Particle dissolution was most important at low waterborne concentrations. We estimated that 70% of the bioaccumulated 109Ag concentration in L. stagnalis at exposures <0.1µgL–1 originated from the newly solubilised Ag. Above this concentration, we predicted that 80% of the bioaccumulated 109Ag concentration originated from the 109Ag NPs. It was not clear if agglomeration had a major influence on uptake rates.


Environmental Science & Technology | 2013

Dietary Bioavailability of Cu Adsorbed to Colloidal Hydrous Ferric Oxide

Daniel J. Cain; Marie-Noële Croteau; Christopher C. Fuller

The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of (65)Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with (65)Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary (65)Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of (65)Cu from HFO was determined following 1-3 days of depuration. Mass transfer of (65)Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of (65)Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.


Environmental Pollution | 2014

Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis

Ana López-Serrano Oliver; Marie-Noële Croteau; Tasha L. Stoiber; Mila Tejamaya; Isabella Römer; Jamie R. Lead; Samuel N. Luoma

Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important.


Human and Ecological Risk Assessment | 2008

A biomonitor for tracking changes in the availability of lakewater cadmium over space and time

Landis Hare; André Tessier; Marie-Noële Croteau

ABSTRACT Determining the exposure of organisms to contaminants is a key component of Ecological Risk Assessments (ERAs). Effective estimates of exposure consider not only the total concentrations of contaminants in an organisms surroundings but also the availability of the contaminants to organisms. Contaminant availability can be inferred from mechanistic models and verified by measurements of contaminant concentrations in organisms. We evaluated the widespread lake-dwelling insect Chaoborus as a potential biomonitor for use in exposure assessments for three metals: cadmium (Cd), copper (Cu), and zinc (Zn). We show that larvae of this midge maintain constant their concentrations of the essential metals Cu and Zn and thus cannot be used to monitor them. In contrast, larval Cd concentrations varied widely both among lakes and in a given lake over time. We were able to relate these variations in biomonitor Cd to changes in lakewater Cd and pH using the Free Ion Activity Model (FIAM). Our results suggest that Chaoborus larvae could be used as an effective tool for estimating the Cd exposure of organisms in lakes for the purposes of ERAs.

Collaboration


Dive into the Marie-Noële Croteau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Cain

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Landis Hare

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher C. Fuller

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Jamie R. Lead

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Dybowska

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge