Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Noëlle Ndjiondjop is active.

Publication


Featured researches published by Marie-Noëlle Ndjiondjop.


Theoretical and Applied Genetics | 2000

A first interspecific Oryza sativa × Oryza glaberrima microsatellite-based genetic linkage map.

Mathias Lorieux; Marie-Noëlle Ndjiondjop; Alain Ghesquière

Abstract Oryza glaberrima is an endemic African cultivated rice species. To provide a tool for evaluation and utilisation of the potential of O. glaberrima in rice breeding, we developed an interspecific O. glaberrima×Oryza sativa genetic linkage map. It was based on PCR markers, essentially microsatellites and STSs. Segregation of markers was examined in a backcross (O. sativa/O. glaberrima//O. sativa) population. Several traits were measured on the BC1 plants, and major genes and QTLs were mapped for these traits. Several of these genes correspond well to previously identified loci. The overall map length was comparable to those observed in indica×japonica crosses, indicating that recombination between the two species occurs without limitation. However, three chromosomes show discrepancies with the indica×japonica maps. The colinearity with intraspecific maps was very good, confirming previous cytological observations. A strong segregation-distortion hot spot was observed on chromosome 6 near the waxy gene, indicating the presence of s10, a sporo-gametophytic sterility gene previously identified by Sano (1990). The main interests of such a PCR-based map for African rice breeding are discussed, including gene and QTL localisation, marker-assisted selection, and the development of interspecific introgression lines.


Plant Disease | 1999

The Genetic Basis of High Resistance to Rice Yellow Mottle Virus (RYMV) in Cultivars of Two Cultivated Rice Species

Marie-Noëlle Ndjiondjop; Laurence Albar; Denis Fargette; Claude M. Fauquet; Alain Ghesquière

Three cultivars of Oryza sativa (IR64, Azucena, and Gigante) and four cultivars of O. glaberrima (Tog5681, Tog5673, CG14, and SG329) were evaluated for their resistance to two isolates of rice yellow mottle virus (RYMV) by enzyme-linked immunosorbent assay (ELISA) and symptomatology. Cultivars Tog5681 and Gigante were highly resistant, and no symptoms were observed when either virus isolate was inoculated at 10 or 20 days postgermination and assayed by ELISA at 7, 14, 22, 35, 50, or 64 days postinoculation. Azucena showed a partial resistance, whereas the other cultivars were susceptible. Symptom appearance was associated with increase in ELISA absorbance in the systemically infected leaves. The best discrimination among the cultivars occurred when the plants were inoculated at 10 days postgermination. Crosses were made between the highly resistant (Gigante and Tog5681) and the susceptible (IR64) cultivars to determine the genetic basis of resistance to RYMV. Evaluation of F1 hybrids and interspecific progenies, as well as the segregation of resistance in F2 and F3 lines of the IR64 × Gigante cross, provided results consistent with the presence of a single recessive resistance gene common to Tog5681 and Gigante.


Theoretical and Applied Genetics | 2003

Fine genetic mapping of a gene required for Rice yellow mottle virus cell-to-cell movement

Laurence Albar; Marie-Noëlle Ndjiondjop; Z. Esshak; Angélique Berger; A. Pinel; Monty Jones; Denis Fargette; Alain Ghesquière

Abstract. The very high resistance to Rice yellow mottle virus observed in the two rice varieties Gigante (Oryza sativa) and Tog 5681 (O. glaberrima) is monogenic and recessive. Bulked segregant analysis was carried out to identify AFLP markers linked to the resistance gene. Mapping of PCR-specific markers, CAPS and microsatellite markers on 429 individuals of an IR64 × Gigante F2 population pinpointed this resistance gene on the long arm of chromosome 4 in a 3.7-cM interval spanned by PCR markers. These markers also flanked the resistance gene of the O. glaberrima accession Tog 5681 and confirmed previous allelism tests. The rarity of this recessive natural resistance was in line with a resistance mechanism model based on point mutations of a host component required for cell-to-cell movement of the virus. Preliminary data on the genetic divergence between the two cultivated rice species in the vicinity of the resistance locus suggested that two different resistance alleles are present in Gigante and Tog 5681. A large set of recombinants is now available to envisage physical mapping and cloning of the gene.


Theoretical and Applied Genetics | 2010

Identification of a second major resistance gene to Rice yellow mottle virus, RYMV2, in the African cultivated rice species, O. glaberrima

Deless Thiémélé; Arnaud Boisnard; Marie-Noëlle Ndjiondjop; Sophie Chéron; Yacouba Séré; Séverin Ake; Alain Ghesquière; Laurence Albar

Rice yellow mottle virus (RYMV) is the most damaging rice-infecting virus in Africa. However, few sources of high resistance and only a single major resistance gene, RYMV1, are known to date. We screened a large representative collection of African cultivated rice (Oryza glaberrima) for RYMV resistance. Whereas high resistance is known to be very rare in Asian cultivated rice (Oryza sativa), we identified 29 (8%) highly resistant accessions in O. glaberrima. The MIF4G domain of RYMV1 was sequenced in these accessions. Some accessions possessed the rymv1-3 or rymv1-4 recessive resistance alleles previously described in O. glaberrima Tog5681 and Tog5672, respectively, and a new allele, rymv1-5, was identified, thereby increasing the number of resistance alleles in O. glaberrima to three. In contrast, only a single allele has been reported in O. sativa. Markers specific to the different alleles of the RYMV1 gene were developed for marker-assisted selection of resistant genotypes for disease management. In addition, the presence of the dominant susceptibility allele (Rymv1-1) in 15 resistant accessions suggests that their resistance is under different genetic control. An allelism test involving one of those accessions revealed a second major resistance gene, i.e., RYMV2. The diversity of resistance genes against RYMV in O. glaberrima species is discussed in relation to the diversification of the virus in Africa.


Plant Disease | 2011

Evaluation of African Cultivated Rice Oryza glaberrima for Resistance to Bacterial Blight

Gustave Djedatin; Marie-Noëlle Ndjiondjop; Thierry Mathieu; Casiana Vera Cruz; Ambaliou Sanni; Alain Ghesquière; Valérie Verdier

Xanthomonas oryzae pv. oryzae is the causal agent of bacterial blight in rice, one of the most devastating diseases of rice worldwide. African X. oryzae pv. oryzae strains belong to a clear genetic group distinct from those of Asia. Three new races of the pathogen were characterized among strains from West Africa. We evaluated 107 Oryza glaberrima accessions for resistance to bacterial blight under greenhouse conditions. Six-week-old seedlings were inoculated with five different African X. oryzae pv. oryzae strains originating from the West African nations of Burkina and Mali and representing different races (A1, A2, and A3). Philippine X. oryzae pv. oryzae strain PXO86 (race 2) was also used. Most (48%) of the accessions of O. glaberrima were highly susceptible to X. oryzae pv. oryzae strains from Burkina, while 20 and 36 were resistant to X. oryzae pv. oryzae strains from Mali and the Philippines, respectively. CAPS markers and dot blot assays were used for detection of resistance genes xa5 and Xa21 from a selected set of O. glaberrima accessions. Our results suggest that the O. glaberrima germplasm contains a narrow genetic base for resistance to X. oryzae pv. oryzae. Sources of resistance identified among O. glaberrima are recommended for rice breeding programs to develop bacterial blight-resistant cultivars for West Africa.


Plant Science | 2012

Agro-morphological characterization of a population of introgression lines derived from crosses between IR 64 (Oryza sativa indica) and TOG 5681 (Oryza glaberrima) for drought tolerance

Roland Bocco; Mathias Lorieux; P.A. Seck; Koichi Futakuchi; Baboucarr Manneh; H. Baimey; Marie-Noëlle Ndjiondjop

The study evaluated effects of drought on some agro-morphological traits of 60 rice genotypes comprising 54 introgression lines with their parents, IR 64 (Oryza sativa) and TOG 5681 (Oryza glaberrima) and four NERICA-L varieties developed from the same parents for comparison. The genotypes were subjected either to full irrigation from sowing to maturity (control) or to 21-day drought applied by stopping irrigation from the 45th day after sowing (DAS) onward (drought) in the dry seasons of 2006 and 2007-2008. Plant height, spikelet fertility, grain yield and leaf area at harvesting were consistently reduced by drought in both seasons. Values of leaf temperature, leaf rolling, leaf tip drying, leaf blast, days from seeding to flowering and maturity were higher under drought. The results on SPAD and number of tillers were not consistent. Significant relationship (P<0.05) was observed between all traits evaluated and grain yield under drought. Introgression lines, SEN-L13-2, MPL-15-3, SEN-L10-1, SEN-L26-3 and SEN-L21-2 showed significantly higher yield than the highest yield NERICA-L variety (all of them had higher yield than the parents). Among them, SEN-L13-2 showed the lowest yield loss by drought and MPL-15-3 had high yield potential and considerably low yield loss by drought.


Genome Biology and Evolution | 2016

De novo assemblies of three Oryza glaberrima accessions provide first insights about pan-genome of African rices

Cécile Monat; Bérengère Pera; Marie-Noëlle Ndjiondjop; Mounirou Sow; Christine Tranchant-Dubreuil; Leila Bastianelli; Alain Ghesquière; François Sabot

Oryza glaberrima is one of the two cultivated species of rice, and harbors various interesting agronomic traits, especially in biotic and abiotic resistance, compared with its Asian cousin O. sativa. A previous reference genome was published but newer studies highlighted some missing parts. Moreover, global species diversity is known nowadays to be represented by more than one single individual. For that purpose, we sequenced, assembled and annotated de novo three different cultivars from O. glaberrima. After validating our assemblies, we were able to better solve complex regions than the previous assembly and to provide a first insight in pan-genomic divergence between individuals. The three assemblies shown large common regions, but almost 25% of the genome present collinearity breakpoints or are even individual specific.


Genetic Resources and Crop Evolution | 2014

Genetic diversity, population structure and differentiation of rice species from Niger and their potential for rice genetic resources conservation and enhancement

Mounirou Sow; Marie-Noëlle Ndjiondjop; Amir Sido; Cédric Mariac; Mark Laing; Gilles Bezançon

Rice genetic resources conservation and evaluation is crucial to ensure germplasm sources for further crop breeding. We conducted a wide collection of Oryza species in Niger and characterize its diversity with microsatellites (or simple sequence repeats, SSR). The aims of this research were to get a better understanding of the extent of genetic diversity, its structure and partition within rice eco-geographical zones of Niger. There were 264 accessions found in farmers’ and other fields: 173 O. sativa (Asia’s rice), 65 O. glaberrima (Africa’s rice), 25 O. barthii, and 1 O. longistaminata (weedy perennial rice), which were genotyped with 18 SSR. A total of 178 alleles were detected, with a mean of 9.89 alleles per locus. The polymorphism information content was 0.65 and heterozygosity was estimated as 0.14. Two main well-differentiate genotypic groups, which correspond to Asian and African rice species, were identified. The SSR set divided the Asia’s rice group (solely indica) into irrigated and floating rice, with rainfed lowland rice in between. The African rice species group was composed of O. glaberrima, O. longistaminata and O. barthii accessions, but without any clear genetic differentiation among them likely due admixtures within the samples of O. barthii. Five accessions that could be natural interspecific hybrids were too admixed for assigning them to any of the two well-differentiated groups. The partitioning of the overall diversity showed that maximum variation was within genotypic groups and subgroups or cropping ecologies, rather than between eco-geographical zones. The eco-geographical distribution of the diversity suggests germplasm exchange in Niger. Next-steps for conserving rice and crop wild relatives in Niger could be taken using the findings of this research.


PLOS ONE | 2016

QTL Mapping in Three Rice Populations Uncovers Major Genomic Regions Associated with African Rice Gall Midge Resistance

Nasser Yao; Cheng-Ruei Lee; Kassa Semagn; Mounirou Sow; Francis E. Nwilene; Olufisayo Kolade; Roland Bocco; Olumoye Oyetunji; Thomas Mitchell-Olds; Marie-Noëlle Ndjiondjop

African rice gall midge (AfRGM) is one of the most destructive pests of irrigated and lowland African ecologies. This study aimed to identify the quantitative trait loci (QTL) associated with AfRGM pest incidence and resistance in three independent bi-parental rice populations (ITA306xBW348-1, ITA306xTOG7106 and ITA306xTOS14519), and to conduct meta QTL (mQTL) analysis to explore whether any genomic regions are conserved across different genetic backgrounds. Composite interval mapping (CIM) conducted on the three populations independently uncovered a total of 28 QTLs associated with pest incidence (12) and pest severity (16). The number of QTLs per population associated with AfRGM resistance varied from three in the ITA306xBW348-1 population to eight in the ITA306xTOG7106 population. Each QTL individually explained 1.3 to 34.1% of the phenotypic variance. The major genomic region for AfRGM resistance had a LOD score and R2 of 60.0 and 34.1% respectively, and mapped at 111 cM on chromosome 4 (qAfrGM4) in the ITA306xTOS14519 population. The meta-analysis reduced the number of QTLs from 28 to 17 mQTLs, each explaining 1.3 to 24.5% of phenotypic variance, and narrowed the confidence intervals by 2.2 cM. There was only one minor effect mQTL on chromosome 1 that was common in the TOS14519 and TOG7106 genetic backgrounds; all other mQTLs were background specific. We are currently fine-mapping and validating the major effect genomic region on chromosome 4 (qAfRGM4). This is the first report in mapping the genomic regions associated with the AfRGM resistance, and will be highly useful for rice breeders.


Frontiers in Plant Science | 2017

Genetic variation and population structure of Oryza glaberrima and development of a mini-core collection using DArTseq

Marie-Noëlle Ndjiondjop; Kassa Semagn; Arnaud C. Gouda; Sèdjro B. Kpeki; Daniel Dro Tia; Mounirou Sow; Alphonse Goungoulou; Moussa Sie; Xavier Perrier; Alain Ghesquière; Marilyn L. Warburton

The sequence variation present in accessions conserved in genebanks can best be used in plant improvement when it is properly characterized and published. Using low cost and high density single nucleotide polymorphism (SNP) assays, the genetic diversity, population structure, and relatedness between pairs of accessions can be quickly assessed. This information is relevant for different purposes, including creating core and mini-core sets that represent the maximum possible genetic variation contained in the whole collection. Here, we studied the genetic variation and population structure of 2,179 Oryza glaberrima Steud. accessions conserved at the AfricaRice genebank using 27,560 DArTseq-based SNPs. Only 14% (3,834 of 27,560) of the SNPs were polymorphic across the 2,179 accessions, which is much lower than diversity reported in other Oryza species. Genetic distance between pairs of accessions varied from 0.005 to 0.306, with 1.5% of the pairs nearly identical, 8.0% of the pairs similar, 78.1% of the pairs moderately distant, and 12.4% of the pairs very distant. The number of redundant accessions that contribute little or no new genetic variation to the O. glaberrima collection was very low. Using the maximum length sub-tree method, we propose a subset of 1,330 and 350 accessions to represent a core and mini-core collection, respectively. The core and mini-core sets accounted for ~61 and 16%, respectively, of the whole collection, and captured 97–99% of the SNP polymorphism and nearly all allele and genotype frequencies observed in the whole O. glaberrima collection available at the AfricaRice genebank. Cluster, principal component and model-based population structure analyses all divided the 2,179 accessions into five groups, based roughly on country of origin but less so on ecology. The first, third and fourth groups consisted of accessions primarily from Liberia, Nigeria, and Mali, respectively; the second group consisted primarily of accessions from Togo and Nigeria; and the fifth and smallest group was a mixture of accessions from multiple countries. Analysis of molecular variance showed between 10.8 and 28.9% of the variation among groups with the remaining 71.1–89.2% attributable to differences within groups.

Collaboration


Dive into the Marie-Noëlle Ndjiondjop's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Ghesquière

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Mark Laing

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denis Fargette

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge