Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Odile Guimond is active.

Publication


Featured researches published by Marie-Odile Guimond.


American Journal of Physiology-endocrinology and Metabolism | 2013

Angiotensin II type 2 receptor promotes adipocyte differentiation and restores adipocyte size in high-fat/high-fructose diet-induced insulin resistance in rats.

Michael Shum; Sandra Pinard; Marie-Odile Guimond; Sébastien M. Labbé; Claude Roberge; Jean-Patrice Baillargeon; Marie-France Langlois; Mathias Alterman; Charlotta Wallinder; Anders Hallberg; André C. Carpentier; Nicole Gallo-Payet

This study was aimed at establishing whether specific activation of angiotensin II (ANG II) type 2 receptor (AT2R) modulates adipocyte differentiation and function. In primary cultures of subcutaneous (SC) and retroperitoneal (RET) preadipocytes, both AT2R and AT1R were expressed at the mRNA and protein level. Cells were stimulated with ANG II or the AT2R agonist C21/M24, alone or in the presence of the AT1R antagonist losartan or the AT2R antagonist PD123,319. During differentiation, C21/M24 increased PPARγ expression in both RET and SC preadipocytes while the number of small lipid droplets and lipid accumulation solely increased in SC preadipocytes. In mature adipocytes, C21/M24 decreased the mean size of large lipid droplets. Upon abolishment of AT2R expression using AT2R-targeted shRNAs, expressions of AT2R, aP2, and PPARγ remained very low, and cells were unable to differentiate. In Wistar rats fed a 6-wk high-fat/high-fructose (HFHF) diet, a significant shift toward larger adipocytes was observed in RET and SC adipose tissue depots. C21/M24 treatments for 6 wk restored normal adipocyte size distribution in both these tissue depots. Moreover, C21/M24 and losartan decreased hyperinsulinemia and improved insulin sensitivity impaired by HFHF diet. A strong correlation between adipocyte size area and glucose infusion rate during euglycemic-hyperinsulinemic clamp was observed. These results indicate that AT2R is involved in early adipocyte differentiation, while in mature adipocytes and in a model of insulin resistance AT2R activation restores normal adipocyte morphology and improves insulin sensitivity.


International Journal of Hypertension | 2012

The Angiotensin II Type 2 Receptor in Brain Functions: An Update

Marie-Odile Guimond; Nicole Gallo-Payet

Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT1) receptor and the type 2 (AT2) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT2 receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT2 receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT2 receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT2 receptor in the brain must also consider the Ang IV/AT4 receptor.


Journal of Medicinal Chemistry | 2012

From the First Selective Non-Peptide AT(2) Receptor Agonist to Structurally Related Antagonists

Murugaiah M. S. Andappan; Xiongyu Wu; Charlotta Wallinder; A. K. Mahalingam; Yiqian Wan; Christian Sköld; Milad Botros; Marie-Odile Guimond; Advait A. Joshi; Fred Nyberg; Nicole Gallo-Payet; Anders Hallberg; Mathias Alterman

A para substitution pattern of the phenyl ring is a characteristic feature of the first reported selective AT(2) receptor agonist M024/C21 (1) and all the nonpeptidic AT(2) receptor agonists described so far. Two series of compounds structurally related to 1 but with a meta substitution pattern have now been synthesized and biologically evaluated for their affinity to the AT(1) and AT(2) receptors. A high AT(2)/AT(1) receptor selectivity was obtained with all 41 compounds synthesized, and the majority exhibited K(i) ranging from 2 to 100 nM. Five compounds were evaluated for their functional activity at the AT(2) receptor, applying a neurite outgrowth assay in NG108-15 cells. Notably, four of the five compounds, with representatives from both series, acted as potent AT(2) receptor antagonists. These compounds were found to be considerably more effective than PD 123,319, the standard AT(2) receptor antagonist used in most laboratories. No AT(2) receptor antagonists were previously reported among the derivatives with a para substitution pattern. Hence, by a minor modification of the agonist 1 it could be transformed into the antagonist, compound 38. These compounds should serve as valuable tools in the assessment of the role of the AT(2) receptor in more complex physiological models.


Frontiers in Endocrinology | 2012

How does angiotensin AT2 receptor activation help neuronal differentiation and improve neuronal pathological situations

Marie-Odile Guimond; Nicole Gallo-Payet

The angiotensin type 2 (AT2) receptor of angiotensin II has long been thought to be limited to few tissues, with the primary effect of counteracting the angiotensin type 1 (AT1) receptor. Functional studies in neuronal cells have demonstrated AT2 receptor capability to modulate neuronal excitability, neurite elongation, and neuronal migration, suggesting that it may be an important regulator of brain functions. The observation that the AT2 receptor was expressed in brain areas implicated in learning and memory led to the hypothesis that it may also be implicated in cognitive functions. However, linking signaling pathways to physiological effects has always proven challenging since information relative to its physiological functions has mainly emerged from indirect observations, either from the blockade of the AT1 receptor or through the use of transgenic animals. From a mechanistic standpoint, the main intracellular pathways linked to AT2 receptor stimulation include modulation of phosphorylation by activation of kinases and phosphatases or the production of nitric oxide and cGMP, some of which are associated with the Gi-coupling protein. The receptor can also interact with other receptors, either G protein-coupled such as bradykinin, or growth factor receptors such as nerve growth factor or platelet-derived growth factor receptors. More recently, new advances have also led to identification of various partner proteins, thus providing new insights into this receptor’s mechanism of action. This review summarizes the recent advances regarding the signaling pathways induced by the AT2 receptor in neuronal cells, and discussed the potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT2 receptor activation by non-peptide and selective agonists could represent new pharmacological tools that may help to improve impaired cognitive performance in Alzheimer’s disease and other neurological cognitive disorders.


Molecular and Cellular Neuroscience | 2010

Fyn is involved in angiotensin II type 2 receptor-induced neurite outgrowth, but not in p42/p44mapk in NG108-15 cells

Marie-Odile Guimond; Claude Roberge; Nicole Gallo-Payet

In NG108-15 cells, activation of p42/p44(mapk) is essential for induction of neurite outgrowth by angiotensin II (Ang II) type 2 receptor (AT(2)). The aim was to verify whether Fyn, a member of the Src family kinases (SFK), is involved in neurite outgrowth induced by AT(2) activation. Preincubation of cells with PP1, a general inhibitor of the SKF, decreased activation of Rap1 and p42/p44(mapk) and abolished TrkA activation by Ang II or by the AT(2) agonist, CGP42112A. NG108-15 cells were transfected with a Fyn-WT and a Fyn-DN expressing vector. Fyn-WT was sufficient to induce neurite outgrowth, although transfection with Fyn-DN abolished neurite elongation. However, the Fyn-DN form failed to affect activation of TrkA, Rap1 or p42/p44(mapk) by Ang II. Thus, although SKF activity is required to achieve AT(2)-induced activation of TrkA, Rap1 and p42/p44(mapk), Fyn is essential for AT(2) receptor-induced neurite outgrowth, but not in AT(2) signaling leading to p42/p44(mapk) activation.


Bioorganic & Medicinal Chemistry | 2008

Selective angiotensin II AT2 receptor agonists: Benzamide structure-activity relationships.

Charlotta Wallinder; Milad Botros; Ulrika Rosenström; Marie-Odile Guimond; Hélène Beaudry; Fred Nyberg; Nicole Gallo-Payet; Anders Hallberg; Mathias Alterman

In the investigation of the structure-activity relationship of nonpeptide AT(2) receptor agonists, a series of substituted benzamide analogues of the selective nonpeptide AT(2) receptor agonist M024 have been synthesised. In a second series, the biphenyl scaffold was compared to the thienylphenyl scaffold and the impact of the isobutyl substituent and its position on AT(1)/AT(2) receptor selectivity was also investigated. Both series included several compounds with high affinity and selectivity for the AT(2) receptor. Three of the compounds were also proven to function as agonists at the AT(2) receptor, as deduced from a neurite outgrowth assay, conducted in NG108-15 cells.


Journal of Biological Chemistry | 2015

Increased SHP-1 Protein Expression by High Glucose Levels Reduces Nephrin Phosphorylation in Podocytes

Benoit Denhez; Farah Lizotte; Marie-Odile Guimond; Nina Jones; Tomoko Takano; Pedro Geraldes

Background: Elevated expression of SHP-1 in diabetic podocytes may potentially interact with nephrin phosphorylation. Results: Rat nephrin Tyr1127 and Tyr1152 are essential for SHP-1 induced nephrin dephosphorylation under high-glucose conditions. Conclusion: SHP-1 contributes to nephrin deactivation in podocytes exposed to high glucose levels. Significance: Reduction of SHP-1 may serve as potential therapeutic target to prevent glomerular pathology in diabetes. Nephrin, a critical podocyte membrane component that is reduced in diabetic nephropathy, has been shown to activate phosphotyrosine signaling pathways in human podocytes. Nephrin signaling is important to reduce cell death induced by apoptotic stimuli. We have shown previously that high glucose level exposure and diabetes increased the expression of SHP-1, causing podocyte apoptosis. SHP-1 possesses two Src homology 2 domains that serve as docking elements to dephosphorylate tyrosine residues of target proteins. However, it remains unknown whether SHP-1 interacts with nephrin and whether its elevated expression affects the nephrin phosphorylation state in diabetes. Here we show that human podocytes exposed to high glucose levels exhibited elevated expression of SHP-1, which was associated with nephrin. Coexpression of nephrin-CD16 and SHP-1 reduced nephrin tyrosine phosphorylation in transfected human embryonic kidney 293 cells. A single tyrosine-to-phenylalanine mutation revealed that rat nephrin Tyr1127 and Tyr1152 are required to allow SHP-1 interaction with nephrin. Overexpression of dominant negative SHP-1 in human podocytes prevented high glucose-induced reduction of nephrin phosphorylation. In vivo, immunoblot analysis demonstrated that nephrin expression and phosphorylation were decreased in glomeruli of type 1 diabetic Akita mice (Ins2+/C96Y) compared with control littermate mice (Ins2+/+), and this was associated with elevated SHP-1 and cleaved caspase-3 expression. Furthermore, immunofluorescence analysis indicated increased colocalization of SHP-1 with nephrin in diabetic mice compared with control littermates. In conclusion, our results demonstrate that high glucose exposure increases SHP-1 interaction with nephrin, causing decreased nephrin phosphorylation, which may, in turn, contribute to diabetic nephropathy.


Frontiers in Endocrinology | 2011

Angiotensin II, a Neuropeptide at the Frontier between Endocrinology and Neuroscience: Is There a Link between the Angiotensin II Type 2 Receptor and Alzheimer’s Disease?

Nicole Gallo-Payet; Marie-Odile Guimond; Lyne Bilodeau; Charlotta Wallinder; Mathias Alterman; Anders Hallberg

Amyloid-β peptide deposition, abnormal hyperphosphorylation of tau, as well as inflammation and vascular damage, are associated with the development of Alzheimer’s disease (AD). Angiotensin II (Ang II) is a peripheral hormone, as well as a neuropeptide, which binds two major receptors, namely the Ang II type 1 receptor (AT1R) and the type 2 receptor (AT2R). Activation of the AT2R counteracts most of the AT1R-mediated actions, promoting vasodilation, decreasing the expression of pro-inflammatory cytokines, both in the brain and in the cardiovascular system. There is evidence that treatment with AT1R blockers (ARBs) attenuates learning and memory deficits. Studies suggest that the therapeutic effects of ARBs may reflect this unopposed activation of the AT2R in addition to the inhibition of the AT1R. Within the context of AD, modulation of AT2R signaling could improve cognitive performance not only through its action on blood flow/brain microcirculation but also through more specific effects on neurons. This review summarizes the current state of knowledge and potential therapeutic relevance of central actions of this enigmatic receptor. In particular, we highlight the possibility that selective AT2R activation by non-peptide and highly selective agonists, acting on neuronal plasticity, could represent new pharmacological tools that may help improve impaired cognitive performance in AD and other neurological cognitive disorders.


Endocrinology | 2008

Angiotensin II Type 2 Receptor Stimulation Increases the Rate of NG108–15 Cell Migration via Actin Depolymerization

Peter Kilian; Shirley Campbell; Lyne Bilodeau; Marie-Odile Guimond; Claude Roberge; Nicole Gallo-Payet; Marcel D. Payet

Angiotensin II (Ang II) has been reported to induce migration in neuronal cell types. Using time-lapse microscopy, we show here that Ang II induces acceleration in NG108-15 cell migration. This effect was antagonized by PD123319, a selective AT2 receptor antagonist, but not by DUP753, a selective AT1 receptor antagonist, and was mimicked by the specific AT2 receptor agonist CGP42112. This Ang II-induced acceleration was not sensitive to the inhibition of previously described signaling pathways of the AT2 receptor, guanylyl cyclase/cyclic GMP or p42/p44 mapk cascades, but was abolished by pertussis toxin treatment and involved PP2A activation. Immunofluorescence studies indicate that Ang II or CGP42112 decreased the amount of filamentous actin at the leading edge of the cells. This decrease was accompanied by a concomitant increase in globular actin levels. Regulation of actin turnover in actin-based motile systems is known to be mainly under the control of the actin depolymerizing factor and cofilin. Basal migration speed decreased by 77.2% in cofilin-1 small interfering RNA-transfected NG108-15 cells, along with suppression of the effect of Ang II. In addition, the Ang II-induced increase in cell velocity was abrogated in serum-free medium as well as by genistein or okadaic acid treatment in a serum-containing medium. Such results indicate that the AT2 receptor increases the migration speed of NG108-15 cells and involves a tyrosine kinase activity, followed by phosphatase activation, which may be of the PP2A type. Therefore, the present study identifies actin depolymerization and cofilin as new targets of AT2 receptor action, in the context of cellular migration.


Cardiovascular Research | 2015

PKC-β activation inhibits IL-18-binding protein causing endothelial dysfunction and diabetic atherosclerosis.

Marie-Claude Durpès; Catherine Morin; Judith Paquin-Veillet; Raphaël Béland; Martin Paré; Marie-Odile Guimond; Mark D. Rekhter; George L. King; Pedro Geraldes

AIMS Clinical observations showed a correlation between accelerated atherosclerosis in diabetes and high plasmatic level of IL-18, a pro-inflammatory cytokine. IL-18 enhances the production of inflammatory cytokines and cellular adhesion molecules contributing to atherosclerotic plaque formation and instability. Previous studies indicated that protein kinase C (PKC)-β inhibition prevented macrophage-induced cytokine expression involved in diabetic (DM) atherosclerotic plaque development. However, the role of PKC-β activation on IL-18/IL-18-binding protein (IL-18BP) pathway causing endothelial dysfunction and monocyte adhesion in diabetes has never been explored. METHODS AND RESULTS Apoe(-/-) mice were rendered DM and fed with western diet containing ruboxistaurin (RBX), a PKC-β inhibitor. After 20 weeks, atherosclerotic plaque composition was quantified. Compared with non-diabetic, DM mice exhibited elevated atherosclerotic plaque formation, cholestoryl ester content and macrophage infiltration, as well as reduced IL-18BP expression in the aorta which was prevented with RBX treatment. Endothelial cells (ECs) and macrophages were exposed to normal or high glucose (HG) levels with or without palmitate and recombinant IL-18 for 24 h. The combined HG and palmitate condition was required to increase IL-18 expression and secretion in macrophages, while it reduced IL-18BP expression in EC causing up-regulation of the vascular cell adhesion molecule (VCAM)-1 and monocyte adhesion. Elevated VCAM-1 expression and monocyte adherence were prevented by siRNA, RBX, and IL-18 neutralizing antibody. CONCLUSION Our study unrevealed a new mechanism by which PKC-β activation promotes EC dysfunction caused by the de-regulation of the IL-18/IL-18BP pathway, leading to increased VCAM-1 expression, monocyte/macrophage adhesion, and accelerated atherosclerotic plaque formation in diabetes.

Collaboration


Dive into the Marie-Odile Guimond's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Geraldes

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claude Roberge

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benoit Denhez

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Farah Lizotte

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Martin Paré

Université de Sherbrooke

View shared research outputs
Researchain Logo
Decentralizing Knowledge