Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Odile Simonnot is active.

Publication


Featured researches published by Marie-Odile Simonnot.


Chemosphere | 2008

Impact of chemical oxidation on soil quality

Catherine Sirguey; Paula Tereza de Souza e Silva; Christophe Schwartz; Marie-Odile Simonnot

Oxidation treatment helps to reduce the polycyclic aromatic hydrocarbon (PAH) load in contaminated soils but it may also have an effect on the soil quality. The impact of permanganate and Fenton oxidation on soil quality is investigated. Soil quality is restricted here to the potential for plant growth. Soil samples were collected from an agricultural field (S1) and a former coking plant (S4). Agricultural soil was spiked with phenanthrene (PHE) and pyrene (PYR) at two concentrations (S2: 700 mg PHE kg(-1), S3: 700 mg PHE kg(-1) and 2100 mg PYR kg(-1)). Soils were treated with both oxidation processes, and analyzed for PAHs and a set of agronomic parameters. A plant germination and growth test was run with rye-grass on treated soils. Results showed that both treatments produced the expected reduction of PAH concentration (from 64% to 97%). Besides, a significant loss of organic C and N, and strong changes in available nutrients were observed. Permanganate treatment increased the specific surface area and the cation exchange capacity in relation to manganese dioxide precipitation, and produced a rise in pH. Fenton oxidation decreased soil pH and increased the water retention capacity. Plant growth was negatively affected by permanganate, related to lower soil permeability and aeration. Both treatments had an effect on soil properties but Fenton oxidation appeared to be more compatible with revegetation.


Pedosphere | 2012

Designing Cropping Systems for Metal-Contaminated Sites: A Review

Ye-Tao Tang; Teng-Hao-Bo Deng; Qi-Hang Wu; Shizhong Wang; Rongliang Qiu; Ze-Bin Wei; Xiaofang Guo; Qi-Tang Wu; Mei Lei; Tong-Bin Chen; Guillaume Echevarria; Thibault Sterckeman; Marie-Odile Simonnot; Jean-Louis Morel

Considering that even contaminated soils are a potential resource for agricultural production, it is essential to develop a set of cropping systems to allow a safe and sustainable agriculture on contaminated lands while avoiding any transfer of toxic trace elements to the food chain. In this review, three main strategies, i.e., phytoexclusion, phytostabilization, and phytoextraction, are proposed to establish cropping systems for production of edible and non-edible plants, and for extraction of elements for industrial use. For safe production of food crops, the selection of low-accumulating plants/cultivars and the application of soil amendments are of vital importance. Phytostabilization using non-food energy and fiber plants can provide additional renewable energy sources and economic benefit with minimum cost of agricultural measures. Phytoextracting trace elements (e.g., As, Cd, Ni, and Zn) using hyperaccumulator species is more suitable for slightly and moderately polluted sites, and phytomining of Ni from serpentine soils has shown a great potential to extract Ni-containing bio-ores of economic interests. We conclude that appropriate combinations of soil types, plant species/cultivars, and agronomic practices can restrict trace metal transfer to the food chain and/or extract energy and metals of industrial use and allow safe agricultural activities.


Journal of Hazardous Materials | 2009

Phenanthrene and pyrene oxidation in contaminated soils using Fenton's reagent.

Paula Tereza de Souza e Silva; Valdinete Lins da Silva; Benício de Barros Neto; Marie-Odile Simonnot

Fentons reagent has shown its applicability to oxidizing these biorefractory organic contaminants. The purpose of this contribution was to investigate the influence of operating parameters on the process efficiency for soil highly contaminated by PAHs. Five variables were selected: pH, reaction time, UV irradiation, hydrogen peroxide concentration and Fe (II) amendment. Their effects on the oxidation of (i) phenanthrene and on (ii) phenanthrene and pyrene present in freshly contaminated soil samples were studied through batch reactor experiments following factorial designs. For phenanthrene oxidation run with a soil contaminated at 700 mg kg(-1), one set of variables enabled us to reach a residual concentration lower than 40 mg kg(-1) (Dutch legislation threshold). The most important factor was the reaction time, followed at a certain distance by UV irradiation, Fe (II), H(2)O(2) concentration and pH, this last variable being the least significant. The possibility of operating without pH adjustment is of importance in the treatment at the field scale. This shows the feasibility of photo-Fenton-like oxidation for the treatment of soil highly contaminated with PAH and the relative importance of the process variables.


Science of The Total Environment | 2012

A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale.

Romain Barbaroux; Edouard Plasari; Guy Mercier; Marie-Odile Simonnot; Jean Louis Morel; Jean-François Blais

The extraction of nickel (Ni) from ultramafic soils by phytomining can be achieved using Alyssum murale cultures. This study presents a new process for the valorization of Ni accumulated by this plant through the production of a Ni ammonium disulfate salt (Ni(NH(4))(2)(SO(4))(2).6H(2)O). The process comprises an initial leaching of the ashes of A. murale with a sulphuric acid solution (1.9 M H(2)SO(4), T=95 °C, t=240 min, TS=150 g ash L(-1)), producing a leachate rich in Ni (10.2 g Ni L(-1); 96% Ni solubilisation), Mg, P, K, Fe, Ca and Al. The pH of the acid leachate is increased to 5.0 with NaOH (5M), followed by an evaporation step which produced a purified solution rich in Ni (21.3 g NiL(-1)) and an iron hydroxide precipitate. The cold crystallization (T=2 °C, t=6h) of this solution by the stoichiometric addition (× 1.2) of ammonium sulfate generates a Ni ammonium disulfate salt, containing 13.2% Ni, that is potentially valuable to industry.


Chemosphere | 2013

PAH oxidation in aged and spiked soils investigated by column experiments

Julien Lemaire; Fabien Laurent; Corinne Leyval; Christophe Schwartz; Michel Buès; Marie-Odile Simonnot

Soils of former steel-making or coking plants have been contaminated for decades by PAHs. These soils could be cleaned up by In situ chemical oxidation (ISCO) but the low PAH availability may be a drawback. The objective of the present contribution was to study the efficiency of PAH oxidation in two aged soils compared to a spiked soil in dynamic conditions. Column experiments were performed with two oxidants: hydrogen peroxide used in modified Fentons reaction and activated persulfate. The oxidant doses were moderate to ensure the feasibility of process upscaling. Besides, the availability of PAHs in these soils was measured by extraction with a cyclodextrin. Our results showed that oxidation was limited: the higher PAH degradation rate was 30% with the aged soils and 55% with the spiked one. PAH availability was a parameter explaining these results but no direct correlation was found between PAH extractability by the cyclodextrin and oxidation efficiency. Other parameters were also involved, such as the organic carbon content, the calcite content and the pH. This study was a first achievement before studying the influence of a number of parameters on the efficiency of PAH oxidation in aged soils.


International Journal of Phytoremediation | 2014

Selection and Combustion of Ni-Hyperaccumulators for the Phytomining Process

Xin Zhang; Vivian Houzelot; Aida Bani; Jean Louis Morel; Guillaume Echevarria; Marie-Odile Simonnot

Ni recovery from serpentine soils by phytomining has proved feasible. Phytomining involves the crop of hyperaccumulating plants with high Ni contents and the valorization of Ni by pyro or hydrometallurgical process. In order to evaluate the Ni content of different plants, we analyzed the organs of 14 hyperaccumulators from three genera: Alyssum, Leptoplax and Bornmuellera. The highest concentration was recorded in the leaves of Leptoplax (34.3 ± 0.7 mg g−1 DM). Additionally, we investigated biomass combustion which is the first step of the process we designed to obtain a nickel salt. We showed that temperature and duration were important parameters to ensure a good quality of ashes. At the bench scale, the best conditions were 550°C and 3 h. In this way, we obtained ashes in which Ni could reach 20 wt%. Biomass ashes can be considered as a bio-ore for recovering metal value.


Journal of Hazardous Materials | 2009

Potassium permanganate oxidation of phenanthrene and pyrene in contaminated soils.

Paula Tereza de Souza e Silva; Valdinete Lins da Silva; Benício de Barros Neto; Marie-Odile Simonnot

Potassium permanganate, widely used in water treatment, has shown its applicability to reduce PAH contamination in groundwater and soils. The first stage to design a treatment at the site scale is the feasibility study at the bench scale, generally performed by means of batch experiments. The aim of the present contribution was to investigate the influence of two factors on PAH degradation in spiked soils, following the method of factorial designs. These factors were the weight ratio KMnO(4)/PAH and the reaction time. Three factorial designs were performed and batch experiments were run to study the degradation of phenanthrene and pyrene on soils spiked at different concentrations, between 700 and 2100 mg kg(-1). We showed that treatment with potassium permanganate significantly reduced PAH concentration, but pyrene was more recalcitrant than phenanthrene. Both variables had negative main effects and a positive two-factor interaction effect: increasing the weight ratio or the reaction time enhanced PAH degradation but the reduction produced by the two factors was lower than the sum of the individual contributions. The comparison of these results with results that we published previously under comparable conditions showed that Fentons reagent was more efficient than potassium permanganate.


Journal of Hazardous Materials | 2016

Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs): A review

B. Ranc; Pierre Faure; V. Croze; Marie-Odile Simonnot

In situ chemical oxidation (ISCO) is a promising alternative to thermal desorption for the remediation of soils contaminated with organic compounds such as polycyclic aromatic hydrocarbons (PAHs). For field application, one major issue is the selection of the optimal doses of the oxidizing solution, i.e. the oxidant and appropriate catalysts and/or additives. Despite an extensive scientific literature on ISCO, this choice is very difficult because many parameters differ from one study to another. The present review identifies the critical factors that must be taken into account to enable comparison of these various contributions. For example, spiked soils and aged, polluted soils cannot be compared; PAHs freshly spiked into a soil are fully available for degradation unlike a complex mixture of pollutants trapped in a soil for many years. Another notable example is the high diversity of oxidation conditions employed during batch experiments, although these affect the representativeness of the system. Finally, in this review a methodology is also proposed based on a combination of the stoichiometric oxidant demand of the organic pollutants and the design of experiments (DOE) in order to allow a better comparison of the various studies so far reported.


Australian Journal of Botany | 2015

The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania

Aida Bani; Guillaume Echevarria; Xin Zhang; Emile Benizri; Baptiste Laubie; Jean Louis Morel; Marie-Odile Simonnot

Ultramafic vertisols cover large areas in Albania and offer opportunities for phytomining. We undertook a field experiment with native Alyssum murale on two representative Vertisols at a distance of 20 km from each other (Pojske and Domosdove, Albania), to test the effect of planting density (transplanted seedlings) on a phytomining cropping system. Both areas were cleared in late summer 2012 and then ploughed and the soils were characterised. At Domosdove, an area of 0.5 ha was planted with local native seedlings at a density of six plants per square metre in September 2012. Spontaneous plants that had germinated in Spring 2012 were left to grow without any competition from other plants on a second 0.1-ha plot at Domosdove. All plots were weeded manually in the autumn of 2012 and spring of 2013. Individual plants occupied ~1 m2 at maturity. At Pojske, an area of 0.3 ha was also planted in September 2012 with local native seedlings of A. murale at a density of four plants per square metre. Plants grown at initial densities of four and six plants per square metre did not fully cover the ground; gaps were filled in naturally by a second spontaneous generation of A. murale seedlings (recruits) that had germinated in Autumn 2012. Other weeds were eliminated with herbicides. At Domosdove, at densities of one and six plants and at Pojske of four plants per square metre, the biomass yield was 10, 5 and 10 t ha–1, respectively. Concentration of phytoextracted nickel was 77, 41 and 112 kg ha–1. We suggest that a density of four plants per square metre is suitable for phytoextraction with native populations of A. murale. A. murale can be a weed itself and lower the nickel phytoextraction yield. Plants responded differently in their native environment than in previous field trials in North America.


Chemosphere | 2011

Is it possible to remediate a BTEX contaminated chalky aquifer by in situ chemical oxidation

Julien Lemaire; Véronique Croze; Joachim Maier; Marie-Odile Simonnot

An industrial coating site in activity located on a chalky plateau, contaminated by BTEX (mainly xylenes, no benzene), is currently remediated by in situ chemical oxidation (ISCO). We present the bench scale study that was conducted to select the most appropriate oxidant. Ozone and catalyzed hydrogen peroxide (Fentons reaction) were discarded since they were incompatible with plant activity. Permanganate, activated percarbonate and activated persulfate were tested. Batch experiments were run with groundwater and groundwater-chalk slurries with these three oxidants. Total BTEX degradation in groundwater was reached with all the oxidants. The molar ratios [oxidant]:[Fe(2+)]:[BTEX] were 100:0:1 with permanganate, 100:100:1 with persulfate and 25:100:1 with percarbonate. Precipitation of either manganese dioxide or iron carbonate (siderite) occurred. The best results with chalk slurries were obtained with permanganate at the molar ratio 110:0:1 and activated persulfate at the molar ratio 110:110:1. To avoid precipitation, persulfate was also used without activation at the molar ratio 140:1. Natural Oxidant Demand measured with both oxidants was lower than 5% of initial oxidant contents. Activated percarbonate was not appropriate because of radical scavenging by carbonated media. Permanganate and persulfate were both effective at oxidant concentrations of ca 1 g kg(-1) with permanganate and 1.8 g kg(-1) with persulfate and adapted to site conditions. Activation of persulfate was not mandatory. This bench scale study proved that ISCO remediation of a chalky aquifer contaminated by mainly xylenes was possible with permanganate and activated or unactivated persulfate.

Collaboration


Dive into the Marie-Odile Simonnot's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guillaume Echevarria

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Louis Morel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michel Sardin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aida Bani

Agricultural University of Tirana

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge