Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Pierre Rols is active.

Publication


Featured researches published by Marie-Pierre Rols.


British Journal of Cancer | 1998

Effective treatment of cutaneous and subcutaneous malignant tumours by electrochemotherapy.

Lluis M. Mir; Glass Lf; Gregor Sersa; Justin Teissié; Domenge C; Damijan Miklavčič; Mark J. Jaroszeski; S. Orlowski; Douglas S. Reintgen; Zvonimir Rudolf; Belehradek M; Richard Gilbert; Marie-Pierre Rols; Jean Belehradek; Bachaud Jm; Ronald C. DeConti; Stabuc B; Maja Cemazar; Coninx P; Richard Heller

Electrochemotherapy (ECT) enhances the effectiveness of chemotherapeutic agents by administering the drug in combination with short intense electric pulses. ECT is effective because electric pulses permeabilize tumour cell membranes and allow non-permeant drugs, such as bleomycin, to enter the cells. The aim of this study was to demonstrate the anti-tumour effectiveness of ECT with bleomycin on cutaneous and subcutaneous tumours. This article summarizes results obtained in independent clinical trials performed by five cancer centres. A total of 291 cutaneous or subcutaneous tumours of basal cell carcinoma (32), malignant melanoma (142), adenocarcinoma (30) and head and neck squamous cell carcinoma (87) were treated in 50 patients. Short and intense electric pulses were applied to tumours percutaneously after intravenous or intratumour administration of bleomycin. The tumours were measured and the response to the treatment evaluated 30 days after the treatment. Objective responses were obtained in 233 (85.3%) of the 273 evaluable tumours that were treated with ECT. Clinical complete responses were achieved in 154 (56.4%) tumours, and partial responses were observed in 79 (28.9%) tumours. The application of electric pulses to the patients was safe and well tolerated. An instantaneous contraction of the underlying muscles was noticed. Minimal adverse side-effects were observed. ECT was shown to be an effective local treatment. ECT was effective regardless of the histological type of the tumour. Therefore, ECT offers an approach to the treatment of cutaneous and subcutaneous tumours in patients with minimal adverse side-effects and with a high response rate.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Direct visualization at the single-cell level of electrically mediated gene delivery

Muriel Golzio; Justin Teissié; Marie-Pierre Rols

Electropermeabilization is one of the nonviral methods successfully used to transfer genes into living cells in vitro and in vivo. Although this approach shows promise in the field of gene therapy, very little is known about the basic processes supporting DNA transfer. The present investigation studies this process at the single-cell level by using digitized fluorescence microscopy. Permeabilization is a prerequisite for gene transfer. Its assay by propidium-iodide (PI) penetration shows that it occurs at the sides of the cell membrane facing the two electrodes, whereas fluorescently labeled plasmids only interact with the electropermeabilized side of the cell facing the cathode. The plasmid interaction with the electropermeabilized part of the cell surface results in the formation of localized aggregates. These membrane-associated spots are formed only when pulses with a longer duration than a critical value are applied. These complexes are formed within 1 s after the pulses and cannot be destroyed by pulses of reversed polarities. They remain at the membrane level up to 10 min after pulsing. Although freely accessible to DNA dye (TOTO-1) 1 min after the pulses, they are fully protected when the addition takes place 10 min after. They diffuse in the cytoplasm 30 min after pulses and are present around the nucleus 24 h later.


Biophysical Journal | 1990

Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon

Marie-Pierre Rols; Justin Teissié

Transient membrane permeabilization by application of high electric field intensity pulses on cells (electropermeabilization) depends on several physical parameters associated with the technique (pulse intensity, number, and duration). In the present study, electropermeabilization is studied in terms of flow of diffusing molecules between cells and external medium. Direct quantification of the phenomenon shows that electric field intensity is a critical parameter in the induction of permeabilization. Electric field intensity must be higher than a critical threshold to make the membrane permeable. This critical threshold depends on the cell size. Extent of permeabilization (i.e., the flow rate across the membrane) is then controlled by both pulse number and duration. Increasing electric field intensity above the critical threshold needed for permeabilization results in an increase membrane area able to be permeabilized but not due to an increase in the specific permeability of the field alterated area. The electroinduced permeabilization is transient and disappears progressively after the application of the electric field pulses. Its life time is under the control of the electric field parameters. The rate constant of the annealing phase is shown to be dependent on both pulse duration and number, but is independent of electric field intensity which creates the permeabilization. The phenomenon is described in terms of membrane organization transition between the natural impermeable state and the electro-induced permeable state, phenomenon only locally induced for electric field intensities above a critical threshold and expanding in relation to both pulse number and duration.


Biophysical Journal | 1998

Electropermeabilization of Mammalian Cells to Macromolecules: Control by Pulse Duration

Marie-Pierre Rols; Justin Teissié

Membrane electropermeabilization to small molecules depends on several physical parameters (pulse intensity, number, and duration). In agreement with a previous study quantifying this phenomenon in terms of flow (Rols and Teissié, Biophys. J. 58:1089-1098, 1990), we report here that electric field intensity is the deciding parameter inducing membrane permeabilization and controls the extent of the cell surface where the transfer can take place. An increase in the number of pulses enhances the rate of permeabilization. The pulse duration parameter is shown to be crucial for the penetration of macromolecules into Chinese hamster ovary cells under conditions where cell viability is preserved. Cumulative effects are observed when repeated pulses are applied. At a constant number of pulses/pulse duration product, transfer of molecules is strongly affected by the time between pulses. The resealing process appears to be first-order with a decay time linearly related to the pulse duration. Transfer of macromolecules to the cytoplasm can take place only if they are present during the pulse. No direct transfer is observed with a postpulse addition. The mechanism of transfer of macromolecules into cells by electric field treatment is much more complex than the simple diffusion of small molecules through the electropermeabilized plasma membrane.


Biophysical Journal | 1993

An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization

Justin Teissié; Marie-Pierre Rols

When applied on intact cell suspension, electric field pulses are known to induce membrane permeabilization (electropermeabilization) and fusion (electrofusion). These effects are triggered through a modulation of the membrane potential difference. Due to the vectorial character of the electric field effects, this modulation, which is superimposed on the resting membrane potential difference, is position-dependent on the cell surface. This explains the difference between the experimentally observed critical field strengths requested to trigger the processes of permeabilization and fusion. The critical membrane potential difference which induces membrane permeabilization can be calculated from these experimental observations. It is observed that its value is always about 200 mV for many different cell systems as we previously reported in the case of pure lipid vesicles. This is much less than assumed in most previous studies.


Biophysical Journal | 1994

Control by pulse parameters of electric field-mediated gene transfer in mammalian cells

Hendrik Wolf; Marie-Pierre Rols; Elvira Boldt; Eberhard Neumann; Justin Teissié

Electric field-mediated gene transfer in mammalian cells (electrotransformation) depends on the pulsing conditions (field intensity, pulse duration, number of pulses). The effect of these parameters was systematically investigated using the transient expression of the chloramphenicol acetyltransferase and the beta-galactosidase activities in Chinese hamster ovary cells. Pulsing conditions inducing reversible permeabilization of the cell plasma membrane are not sufficient to induce gene transfer. The plasmid must be present during the electric pulse if it is to be transferred across the membrane into the cytoplasm. Only the localized part of the cell membrane brought to the permeabilized state by the external field is competent. Pulse duration plays a key role in the magnitude of the transfer. The field induces a complex reaction between the membrane and the plasmid that is accumulated at the cell interface by electrophoretic forces. This leads to an insertion of the plasmid, which can then cross the membrane.


Molecular Biotechnology | 2009

What is (Still not) Known of the Mechanism by Which Electroporation Mediates Gene Transfer and Expression in Cells and Tissues

Jean-Michel Escoffre; Thomas Portet; Luc Wasungu; Justin Teissié; David S. Dean; Marie-Pierre Rols

Cell membranes can be transiently permeabilized under application of electric pulses. This treatment allows hydrophilic therapeutic molecules, such as anticancer drugs and DNA, to enter into cells and tissues. This process, called electropermeabilization or electroporation, has been rapidly developed over the last decade to deliver genes to tissues and organs, but there is a general agreement that very little is known about what is really occurring during membrane electropermeabilization. It is well accepted that the entry of small molecules, such as anticancer drugs, occurs mostly through simple diffusion after the pulse while the entry of macromolecules, such as DNA, occurs through a multistep mechanism involving the electrophoretically driven interaction of the DNA molecule with the destabilized membrane during the pulse and then its passage across the membrane. Therefore, successful DNA electrotransfer into cells depends not only on cell permeabilization but also on the way plasmid DNA interacts with the plasma membrane and, once into the cytoplasm, migrates towards the nucleus. The focus of this review is to describe the different aspects of what is known of the mechanism of membrane permeabilization and associated gene transfer and, by doing so, what are the actual limits of the DNA delivery into cells.


Advanced Drug Delivery Reviews | 1999

Electropermeabilization of cell membranes

Justin Teissié; Nathalie Eynard; Bruno Gabriel; Marie-Pierre Rols

A position dependent modulation of the membrane potential difference is induced when an electric field is applied to a cell. When cells are submitted to short lived electric field pulses with an overcritical intensity, a local membrane alteration is induced, which may reseal. Its molecular definition remains unknown. A free exchange of hydrophilic molecules takes place across the membrane. A leakage of cytosolic metabolites is present. However, a loading of polar drugs into the cytoplasm is obtained. A short description of the processes affecting the cell membrane organization is given. Lipids appear as the primary target of the field effect as in the case of liposomes. Nevertheless membrane proteins appear to be affected by a direct or by a back effect. The permeabilized state is long lived. The cell metabolism plays indeed a critical role in the recovery. The cell viability can be nevertheless preserved.


European Biophysics Journal | 2003

Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment

Blaž Valič; Muriel Golzio; Mojca Pavlin; Anne Schatz; Cécile Faurie; Bruno Gabriel; Justin Teissié; Marie-Pierre Rols; Damijan Miklavčič

The transmembrane potential on a cell exposed to an electric field is a critical parameter for successful cell permeabilization. In this study, the effect of cell shape and orientation on the induced transmembrane potential was analyzed. The transmembrane potential was calculated on prolate and oblate spheroidal cells for various orientations with respect to the electric field direction, both numerically and analytically. Changing the orientation of the cells decreases the induced transmembrane potential from its maximum value when the longest axis of the cell is parallel to the electric field, to its minimum value when the longest axis of the cell is perpendicular to the electric field. The dependency on orientation is more pronounced for elongated cells while it is negligible for spherical cells. The part of the cell membrane where a threshold transmembrane potential is exceeded represents the area of electropermeabilization, i.e. the membrane area through which the transport of molecules is established. Therefore the surface exposed to the transmembrane potential above the threshold value was calculated. The biological relevance of these theoretical results was confirmed with experimental results of the electropermeabilization of plated Chinese hamster ovary cells, which are elongated. Theoretical and experimental results show that permeabilization is not only a function of electric field intensity and cell size but also of cell shape and orientation.


Bioelectrochemistry and Bioenergetics | 1995

Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy

Lluis M. Mir; S. Orlowski; Jean Belehradek; Justin Teissié; Marie-Pierre Rols; Gregor Sersa; Damijan Miklavčič; Richard Gilbert; Richard Heller

Short and intense electric pulses (EP) are regularly used in almost all molecular and cellular biology laboratories to introduce foreign DNA, as well as other exogeneous molecules, into living cells. Besides these in vitro applications, some in vivo applications have recently emerged. Biomedical application of EP is thus a new interdisciplinary field at the frontier of physics, chemistry and biology. This article intends to give an informative background and an overview of several presentations from the XIlth Symposium on Bioelectrochemistry and Bioenergetics that dealt with this subject, as well as from the two round tables organized by the authors 1. Two procedures have already entered clinical trials; the electroinsertion of CD4 molecules on red blood cell membranes, which uses EP delivered ex vivo, and antitumor electrochemotherapy, which uses EP delivered in vivo. An overview of current research on the latter is given in more detail.

Collaboration


Dive into the Marie-Pierre Rols's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Michel Escoffre

François Rabelais University

View shared research outputs
Top Co-Authors

Avatar

Laure Gibot

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar

Luc Wasungu

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Delteil

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge