Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie R. Webster is active.

Publication


Featured researches published by Marie R. Webster.


Cancer Discovery | 2013

Hypoxia Induces Phenotypic Plasticity and Therapy Resistance in Melanoma via the Tyrosine Kinase Receptors ROR1 and ROR2

Michael P. O'Connell; Katie Marchbank; Marie R. Webster; Alexander Valiga; Amanpreet Kaur; Adina Vultur; Ling Li; Meenhard Herlyn; Jessie Villanueva; Qin Liu; Xiangfan Yin; Sandy Widura; Nivia Ruiz; Tura C. Camilli; Fred E. Indig; Keith T. Flaherty; Jennifer A. Wargo; Dennie T. Frederick; Zachary A. Cooper; Suresh Nair; Ravi K. Amaravadi; Lynn M. Schuchter; Giorgos C. Karakousis; Wei Xu; Xaiowei Xu; Ashani T. Weeraratna

UNLABELLED An emerging concept in melanoma biology is that of dynamic, adaptive phenotype switching, where cells switch from a highly proliferative, poorly invasive phenotype to a highly invasive, less proliferative one. This switch may hold significant implications not just for metastasis, but also for therapy resistance. We demonstrate that phenotype switching and subsequent resistance can be guided by changes in expression of receptors involved in the noncanonical Wnt5A signaling pathway, ROR1 and ROR2. ROR1 and ROR2 are inversely expressed in melanomas and negatively regulate each other. Furthermore, hypoxia initiates a shift of ROR1-positive melanomas to a more invasive, ROR2-positive phenotype. Notably, this receptor switch induces a 10-fold decrease in sensitivity to BRAF inhibitors. In patients with melanoma treated with the BRAF inhibitor vemurafenib, Wnt5A expression correlates with clinical response and therapy resistance. These data highlight the fact that mechanisms that guide metastatic progression may be linked to those that mediate therapy resistance. SIGNIFICANCE These data show for the fi rst time that a single signaling pathway, the Wnt signaling pathway, can effectively guide the phenotypic plasticity of tumor cells, when primed to do so by a hypoxic microenvironment. Importantly, this increased Wnt5A signaling can give rise to a subpopulation of highly invasive cells that are intrinsically less sensitive to novel therapies for melanoma, and targeting the Wnt5A/ROR2 axis could improve the efficacy and duration of response for patients with melanoma on vemurafenib.


Nature | 2016

sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance

Amanpreet Kaur; Marie R. Webster; Katie Marchbank; Reeti Behera; Abibatou Ndoye; Curtis H. Kugel; Vanessa Dang; Jessica Appleton; Michael P. O'Connell; Phil F. Cheng; Alexander Valiga; Rachel Morissette; Nazli B. McDonnell; Luigi Ferrucci; Andrew V. Kossenkov; Katrina Meeth; Hsin Yao Tang; Xiangfan Yin; William H. Wood; Elin Lehrmann; Kevin G. Becker; Keith T. Flaherty; Dennie T. Frederick; Jennifer A. Wargo; Zachary A. Cooper; Michael T. Tetzlaff; Courtney W. Hudgens; Katherine M. Aird; Rugang Zhang; Xiaowei Xu

Cancer is a disease of ageing. Clinically, aged cancer patients tend to have a poorer prognosis than young. This may be due to accumulated cellular damage, decreases in adaptive immunity, and chronic inflammation. However, the effects of the aged microenvironment on tumour progression have been largely unexplored. Since dermal fibroblasts can have profound impacts on melanoma progression, we examined whether age-related changes in dermal fibroblasts could drive melanoma metastasis and response to targeted therapy. Here we find that aged fibroblasts secrete a Wnt antagonist, sFRP2, which activates a multi-step signalling cascade in melanoma cells that results in a decrease in β-catenin and microphthalmia-associated transcription factor (MITF), and ultimately the loss of a key redox effector, APE1. Loss of APE1 attenuates the response of melanoma cells to DNA damage induced by reactive oxygen species, rendering the cells more resistant to targeted therapy (vemurafenib). Age-related increases in sFRP2 also augment both angiogenesis and metastasis of melanoma cells. These data provide an integrated view of how fibroblasts in the aged microenvironment contribute to tumour progression, offering new possibilities for the design of therapy for the elderly.


Proceedings of the National Academy of Sciences of the United States of America | 2015

PI3K therapy reprograms mitochondrial trafficking to fuel tumor cell invasion

M. Cecilia Caino; Jagadish C. Ghosh; Young Chan Chae; Valentina Vaira; Dayana B. Rivadeneira; Alice Faversani; Paolo Rampini; Andrew V. Kossenkov; Katherine M. Aird; Rugang Zhang; Marie R. Webster; Ashani T. Weeraratna; Silvano Bosari; Lucia R. Languino; Dario C. Altieri

Significance Despite the promise of personalized cancer medicine, most molecular therapies produce only modest and short-lived patient gains. In addition to drug resistance, it is also possible that tumors adaptively reprogram their signaling pathways to evade therapy-induced “stress” and, in the process, acquire more aggressive disease traits. We show here that small-molecule inhibitors of PI3K, a cancer node and important therapeutic target, induce transcriptional and signaling reprogramming in tumors. This involves the trafficking of energetically active mitochondria to subcellular sites of cell motility, where they provide a potent, “regional” energy source to support tumor cell invasion. Although this response may paradoxically increase the risk of metastasis during PI3K therapy, targeting mitochondrial reprogramming is feasible, and could provide a novel therapeutic strategy. Molecular therapies are hallmarks of “personalized” medicine, but how tumors adapt to these agents is not well-understood. Here we show that small-molecule inhibitors of phosphatidylinositol 3-kinase (PI3K) currently in the clinic induce global transcriptional reprogramming in tumors, with activation of growth factor receptors, (re)phosphorylation of Akt and mammalian target of rapamycin (mTOR), and increased tumor cell motility and invasion. This response involves redistribution of energetically active mitochondria to the cortical cytoskeleton, where they support membrane dynamics, turnover of focal adhesion complexes, and random cell motility. Blocking oxidative phosphorylation prevents adaptive mitochondrial trafficking, impairs membrane dynamics, and suppresses tumor cell invasion. Therefore, “spatiotemporal” mitochondrial respiration adaptively induced by PI3K therapy fuels tumor cell invasion, and may provide an important antimetastatic target.


Science Signaling | 2013

A Wnt-er Migration: The Confusing Role of β-Catenin in Melanoma Metastasis

Marie R. Webster; Ashani T. Weeraratna

The repertoire of Wnt receptors and co-receptors in melanoma cells may determine whether β-catenin promotes metastasis. Wnt signaling in melanoma is complex, requiring the coordinate expression of multiple players. Depending on the context of receptors and co-receptors that are present, Wnt proteins may signal through either canonical or noncanonical pathways. The role of β-catenin in melanoma metastasis remains unclear; however, a new study points to the roles of Wnt5A and ARF6 in driving β-catenin expression and melanoma metastasis. Here, we discuss this finding and how it may help us define different subpopulations of melanoma cells that could have different outcomes, as well as different responses to therapy.


Pigment Cell & Melanoma Research | 2015

Wnt5A promotes an adaptive, senescent‐like stress response, while continuing to drive invasion in melanoma cells

Marie R. Webster; Mai Xu; Kathryn Kinzler; Amanpreet Kaur; Jessica Appleton; Michael P. O'Connell; Katie Marchbank; Alexander Valiga; Vanessa Dang; Gao Zhang; Ana Slipicevic; Frederick Keeney; Elin Lehrmann; William H. Wood; Kevin G. Becker; Andrew V. Kossenkov; Dennie T. Frederick; Keith T. Flaherty; Xiaowei Xu; Meenhard Herlyn; Maureen E. Murphy; Ashani T. Weeraratna

We have previously shown that Wnt5A drives invasion in melanoma. We have also shown that Wnt5A promotes resistance to therapy designed to target the BRAFV600E mutation in melanoma. Here, we show that melanomas characterized by high levels of Wnt5A respond to therapeutic stress by increasing p21 and expressing classical markers of senescence, including positivity for senescence‐associated β‐galactosidase (SA‐β‐gal), senescence‐associated heterochromatic foci (SAHF), H3K9Me chromatin marks, and PML bodies. We find that despite this, these cells retain their ability to migrate and invade. Further, despite the expression of classic markers of senescence such as SA‐β‐gal and SAHF, these Wnt5A‐high cells are able to colonize the lungs in in vivo tail vein colony‐forming assays. This clearly underscores the fact that these markers do not indicate true senescence in these cells, but instead an adaptive stress response that allows the cells to evade therapy and invade. Notably, silencing Wnt5A reduces expression of these markers and decreases invasiveness. The combined data point to Wnt5A as a master regulator of an adaptive stress response in melanoma, which may contribute to therapy resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Modeling the two-way feedback between contractility and matrix realignment reveals a nonlinear mode of cancer cell invasion

Hossein Ahmadzadeh; Marie R. Webster; Reeti Behera; Angela M. Jimenez Valencia; Denis Wirtz; Ashani T. Weeraratna; Vivek B. Shenoy

Significance The mechanical cross talk between intracellular and extracellular forces can promote the invasive potential of tumor cells in tumors. Using a quantitative model, we elucidate the two-way feedback loop between stress-dependent cell contractility and matrix fiber realignment and strain stiffening, which enables the cells to polarize and enhance their contractility to break free from the tumor and invade into the matrix. Our model predicts that intermediate matrix stiffness is optimal for invasion, and we find a positive correlation between cell elongation and alignment of fibers in the matrix. Importantly, our model can be used to explain how morphological and structural changes in the tumor microenvironment, such as elevated rigidity and fiber alignment prior to cell invasion, are prognostic of the malignant phenotype. Cancer cell invasion from primary tumors is mediated by a complex interplay between cellular adhesions, actomyosin-driven contractility, and the physical characteristics of the extracellular matrix (ECM). Here, we incorporate a mechanochemical free-energy–based approach to elucidate how the two-way feedback loop between cell contractility (induced by the activity of chemomechanical interactions such as Ca2+ and Rho signaling pathways) and matrix fiber realignment and strain stiffening enables the cells to polarize and develop contractile forces to break free from the tumor spheroids and invade into the ECM. Interestingly, through this computational model, we are able to identify a critical stiffness that is required by the matrix to break intercellular adhesions and initiate cell invasion. Also, by considering the kinetics of the cell movement, our model predicts a biphasic invasiveness with respect to the stiffness of the matrix. These predictions are validated by analyzing the invasion of melanoma cells in collagen matrices of varying concentration. Our model also predicts a positive correlation between the elongated morphology of the invading cells and the alignment of fibers in the matrix, suggesting that cell polarization is directly proportional to the stiffness and alignment of the matrix. In contrast, cells in nonfibrous matrices are found to be rounded and not polarized, underscoring the key role played by the nonlinear mechanics of fibrous matrices. Importantly, our model shows that mechanical principles mediated by the contractility of the cells and the nonlinearity of the ECM behavior play a crucial role in determining the phenotype of the cell invasion.


Molecular and Cellular Biology | 2015

Novel Protein Kinase C-Mediated Control of Orai1 Function in Invasive Melanoma

Robert Hooper; Xuexin Zhang; Marie R. Webster; Christina Go; Joseph Kedra; Katie Marchbank; Donald L. Gill; Ashani T. Weeraratna; Mohamed Trebak; Jonathan Soboloff

ABSTRACT The incidence of malignant melanoma, a cancer of the melanocyte cell lineage, has nearly doubled in the past 20 years. Wnt5A, a key driver of melanoma invasiveness, induces Ca2+ signals. To understand how store-operated calcium entry (SOCE) contributes to Wnt5A-induced malignancy in melanoma models, we examined the expression and function of STIM1 and Orai1 in patient-derived malignant melanoma cells, previously characterized as either highly invasive (metastatic) or noninvasive. Using both fluorescence microscopy and electrophysiological approaches, we show that SOCE is greatly diminished in invasive melanoma compared to its level in noninvasive cell types. However, no loss of expression of any members of the STIM and Orai families was observed in invasive melanoma cells. Moreover, overexpressed wild-type STIM1 and Orai1 failed to restore SOCE in invasive melanoma cells, and we observed no defects in their localization before or after store depletion in any of the invasive cell lines. Importantly, however, we determined that SOCE was restored by inhibition of protein kinase C, a known downstream target of Wnt5A. Furthermore, coexpression of STIM1 with an Orai1 mutant insensitive to protein kinase C-mediated phosphorylation fully restored SOCE in invasive melanoma. These findings reveal a level of control for STIM/Orai function in invasive melanoma not previously reported.


Journal of Investigative Dermatology | 2015

UV-Induced Wnt7a in the Human Skin Microenvironment Specifies the Fate of Neural Crest-Like Cells via Suppression of Notch.

Mizuho Fukunaga-Kalabis; Denitsa Hristova; Joshua X. Wang; Ling Li; Markus V. Heppt; Zhi Wei; Alexandra Gyurdieva; Marie R. Webster; Masahiro Oka; Ashani T. Weeraratna; Meenhard Herlyn

Multipotent stem cells with neural crest-like properties have been identified in the dermis of human skin. These neural crest stem cell (NCSC)-like cells display self-renewal capacity and differentiate into neural crest derivatives, including epidermal pigment-producing melanocytes. NCSC-like cells share many properties with aggressive melanoma cells, such as high migratory capabilities and expression of the neural crest markers. However, little is known about which intrinsic or extrinsic signals determine the proliferation or differentiation of these neural crest-like stem cells. Here, we show that in NCSC-like cells, Notch signaling is highly activated, similar to melanoma cells. Inhibition of Notch signaling reduced proliferation of NCSC-like cells, induced cell death, and down-regulated non-canonical Wnt5a, suggesting that the Notch pathway contributes to the maintenance and motility of these stem cells. In three-dimensional skin reconstructs, canonical Wnt signaling promoted the differentiation of NCSC-like cells into melanocytes. This differentiation was triggered by the endogenous Notch inhibitor Numb, which is up-regulated in the stem cells by Wnt7a derived from UV-irradiated keratinocytes. Together, these data reveal a crosstalk between the two conserved developmental pathways in postnatal human skin, and highlight the role of the skin microenvironment in specifying the fate of stem cells.


British Journal of Cancer | 2016

In the Wnt-er of life: Wnt signalling in melanoma and ageing

Amanpreet Kaur; Marie R. Webster; Ashani T. Weeraratna

Although the clinical landscape of melanoma is improving rapidly, metastatic melanoma remains a deadly disease. Age remains one of the greatest risk factors for melanoma, and patients older than 55 have a much poorer prognosis than younger individuals, even when the data are controlled for grade and stage. The reasons for this disparity have not been fully uncovered, but there is some recent evidence that Wnt signalling may have a role. Wnt signalling is known to have roles both in cancer progression as well as in organismal ageing. In melanoma, the interplay of Wnt signalling pathways is complex, with different members of the Wnt family guiding different aspects of invasion and proliferation. Here, we will briefly review the current literature addressing the roles of different Wnt pathways in melanoma pathogenesis, provide an overview of Wnt signalling during ageing, and discuss the intersection between melanoma and ageing in terms of Wnt signalling.


Clinical Cancer Research | 2018

Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations

Curtis H. Kugel; Stephen M. Douglass; Marie R. Webster; Amanpreet Kaur; Qin Liu; Xiangfan Yin; Sarah A. Weiss; Farbod Darvishian; Rami Al-Rohil; Abibatou Ndoye; Reeti Behera; Gretchen M. Alicea; Brett L. Ecker; Mitchell Fane; Michael J. Allegrezza; Nikolaos Svoronos; Vinit Kumar; Daniel Y. Wang; Rajasekharan Somasundaram; Siwen Hu-Lieskovan; Alpaslan Ozgun; Meenhard Herlyn; Jose R. Conejo-Garcia; Dmitry I. Gabrilovich; Erica L. Stone; Theodore S. Nowicki; Jeffrey A. Sosman; Rajat Rai; Matteo S. Carlino; Richard Marais

Purpose: We have shown that the aged microenvironment increases melanoma metastasis, and decreases response to targeted therapy, and here we queried response to anti-PD1. Experimental Design: We analyzed the relationship between age, response to anti-PD1, and prior therapy in 538 patients. We used mouse models of melanoma, to analyze the intratumoral immune microenvironment in young versus aged mice and confirmed our findings in human melanoma biopsies. Results: Patients over the age of 60 responded more efficiently to anti-PD-1, and likelihood of response to anti-PD-1 increased with age, even when we controlled for prior MAPKi therapy. Placing genetically identical tumors in aged mice (52 weeks) significantly increased their response to anti-PD1 as compared with the same tumors in young mice (8 weeks). These data suggest that this increased response in aged patients occurs even in the absence of a more complex mutational landscape. Next, we found that young mice had a significantly higher population of regulatory T cells (Tregs), skewing the CD8+:Treg ratio. FOXP3 staining of human melanoma biopsies revealed similar increases in Tregs in young patients. Depletion of Tregs using anti-CD25 increased the response to anti-PD1 in young mice. Conclusions: While there are obvious limitations to our study, including our inability to conduct a meta-analysis due to a lack of available data, and our inability to control for mutational burden, there is a remarkable consistency in these data from over 500 patients across 8 different institutes worldwide. These results stress the importance of considering age as a factor for immunotherapy response. Clin Cancer Res; 24(21); 5347–56. ©2018 AACR. See related commentary by Pawelec, p. 5193

Collaboration


Dive into the Marie R. Webster's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaowei Xu

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge