Marie-Renée Blanchet
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Renée Blanchet.
Journal of Leukocyte Biology | 2007
Marie-Renée Blanchet; Anick Langlois; Evelyne Israël-Assayag; Marie-Josée Beaulieu; Claudine Ferland; Michel Laviolette; Yvon Cormier
Nicotinic receptor agonists decreased the infiltration of eosinophils into the lung and airways in a mouse model of asthma. To better understand the mechanisms implicated in this anti‐inflammatory phenomenon, the expression of nicotinic acetylcholine receptors (nAChRs) and the effect of dimethylphenylpiperazinium (DMPP), a nonselective nAChR agonist, on human blood eosinophils were studied. The expression of α‐3, ‐4, and ‐7 nAChR subunits on human blood eosinophils was measured by cell ELISA and immunocytochemistry. mRNA expression for all three subunits was evaluated by quantitative RT‐PCR. The effect of DMPP on leukotriene C4 (LTC4) and matrix metalloproteinase‐9 (MMP‐9) production, eosinophil migration, and intracellular calcium mobilization was measured. The results show that the α‐3, ‐4, and ‐7 nAChR subunits and mRNAs are expressed by blood eosinophils. In vitro treatment of these cells with various concentrations of DMPP reduced platelet‐activating factor (PAF)‐induced LTC4 production significantly. DMPP (160 μM) decreased eotaxin, and 5‐oxo‐6,8,11,14‐eicosatetranoic acid induced eosinophil migration through Matrigel by 40.9% and 55.5%, respectively. This effect was reversed by the nAChR antagonist mecamylamine. In addition, DMPP reduced MMP‐9 release and the inositol 1,4,5‐triphosphate‐dependent intracellular calcium increase provoked by PAF. Taken together, these results indicate that functional nAChRs are expressed on eosinophils and that nAChR agonists down‐regulate eosinophil function in vitro. These anti‐inflammatory effects could be of interest in the treatment of allergic asthma.
Cellular and Molecular Life Sciences | 2016
Caroline Turcotte; Marie-Renée Blanchet; Michel Laviolette; Nicolas Flamand
The CB2 receptor is the peripheral receptor for cannabinoids. It is mainly expressed in immune tissues, highlighting the possibility that the endocannabinoid system has an immunomodulatory role. In this respect, the CB2 receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases. In this regard, numerous studies have reported that mice lacking the CB2 receptor have an exacerbated inflammatory phenotype. This suggests that therapeutic strategies aiming at modulating CB2 signaling could be promising for the treatment of various inflammatory conditions. Herein, we review the pharmacology of the CB2 receptor, its expression pattern, and the signaling pathways induced by its activation. We next examine the regulation of immune cell functions by the CB2 receptor and the evidence obtained from primary human cells, immortalized cell lines, and animal models of inflammation. Finally, we discuss the possible therapies targeting the CB2 receptor and the questions that remain to be addressed to determine whether this receptor could be a potential target to treat inflammatory disease.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2015
Emilie Bernatchez; Matthew Gold; Anick Langlois; Anne-Marie Lemay; Julyanne Brassard; Nicolas Flamand; David Marsolais; Kelly M. McNagny; Marie-Renée Blanchet
Although CD103(+) cells recently emerged as key regulatory cells in the gut, the role of CD103 ubiquitous expression in the lung and development of allergic airway disease has never been studied. To answer this important question, we evaluated the response of Cd103(-/-) mice in two separate well-described mouse models of asthma (ovalbumin and house dust mite extract). Pulmonary inflammation was assessed by analysis of bronchoalveolar lavage content, histology, and cytokine response. CD103 expression was analyzed on lung dendritic cells and T cell subsets by flow cytometry. Cd103(-/-) mice exposed to antigens developed exacerbated lung inflammation, characterized by increased eosinophilic infiltration, severe tissue inflammation, and altered cytokine response. In wild-type mice exposed to house dust mite, CD103(+) dendritic cells are increased in the lung and an important subset of CD4(+) T cells, CD8(+) T cells, and T regulatory cells express CD103. Importantly, Cd103(-/-) mice presented a deficiency in the resolution phase of inflammation, which supports an important role for this molecule in the control of inflammation severity. These results suggest an important role for CD103 in the control of airway inflammation in asthma.
Respiratory Research | 2015
David Gendron; Anne-Marie Lemay; Claudine Tremblay; Laetitia Ja Lai; Anick Langlois; Emilie Bernatchez; Nicolas Flamand; Marie-Renée Blanchet; Anthony S. Don; Ynuk Bossé; Elyse Y. Bissonnette; David Marsolais
BackgroundIn vivo phosphorylation of sphingosine analogs with their ensuing binding and activation of their cell-surface sphingosine-1-phosphate receptors is regarded as the main immunomodulatory mechanism of this new class of drugs. Prophylactic treatment with sphingosine analogs interferes with experimental asthma by impeding the migration of dendritic cells to draining lymph nodes. However, whether these drugs can also alleviate allergic airway inflammation after its onset remains to be determined. Herein, we investigated to which extent and by which mechanisms the sphingosine analog AAL-R interferes with key features of asthma in a murine model during ongoing allergic inflammation induced by Dermatophagoides pteronyssinus.MethodsBALB/c mice were exposed to either D. pteronyssinus or saline, intranasally, once-daily for 10 consecutive days. Mice were treated intratracheally with either AAL-R, its pre-phosphorylated form AFD-R, or the vehicle before every allergen challenge over the last four days, i.e. after the onset of allergic airway inflammation. On day 11, airway responsiveness to methacholine was measured; inflammatory cells and cytokines were quantified in the airways; and the numbers and/or viability of T cells, B cells and dendritic cells were assessed in the lungs and draining lymph nodes.ResultsAAL-R decreased airway hyperresponsiveness induced by D. pteronyssinus by nearly 70%. This was associated with a strong reduction of IL-5 and IL-13 levels in the airways and with a decreased eosinophilic response. Notably, the lung CD4+ T cells were almost entirely eliminated by AAL-R, which concurred with enhanced apoptosis/necrosis in that cell population. This inhibition occurred in the absence of dendritic cell number modulation in draining lymph nodes. On the other hand, the pre-phosphorylated form AFD-R, which preferentially acts on cell-surface sphingosine-1-phosphate receptors, was relatively impotent at enhancing cell death, which led to a less efficient control of T cell and eosinophil responses in the lungs.ConclusionAirway delivery of the non-phosphorylated sphingosine analog, but not its pre-phosphorylated counterpart, is highly efficient at controlling the local T cell response after the onset of allergic airway inflammation. The mechanism appears to involve local induction of lymphocyte apoptosis/necrosis, while mildly affecting dendritic cell and T cell accumulation in draining lymph nodes.
Physiological Reports | 2017
Emilie Bernatchez; Matthew Gold; Anick Langlois; Pascale Blais-Lecours; Magali Boucher; Caroline Duchaine; David Marsolais; Kelly M. McNagny; Marie-Renée Blanchet
Despite improved awareness of work‐related diseases and preventive measures, many workers are still at high risk of developing occupational hypersensitivity airway diseases. This stems from a lack of knowledge of bioaerosol composition and their potential effects on human health. Recently, archaea species were identified in bioaerosols, raising the possibility that they play a major role in exposure‐related pathology. Specifically, Methanosphaera stadtmanae (MSS) and Methanobrevibacter smithii (MBS) are found in high concentrations in agricultural environments and respiratory exposure to crude extract demonstrates immunomodulatory activity in mice. Nevertheless, our knowledge of the specific impact of methanogens exposure on airway immunity and their potential to induce airway hypersensitivity responses in workers remains scant. Analysis of the lung mucosal response to methanogen crude extracts in mice demonstrated that MSS and MBS predominantly induced TH17 airway inflammation, typical of a type IV hypersensitivity response. Furthermore, the response to MSS was associated with antigen‐specific IgG1 and IgG2a production. However, despite the presence of eosinophils after MSS exposure, only a weak TH2 response and no airway hyperresponsiveness were observed. Finally, using eosinophil and mast cell‐deficient mice, we confirmed that these cells are dispensable for the TH17 response to MSS, although eosinophils likely contribute to the exacerbation of inflammatory processes induced by MSS crude extract exposure. We conclude that, as MSS induces a clear type IV hypersensitivity lung response, it has the potential to be harmful to workers frequently exposed to this methanogen, and that preventive measures should be taken to avoid chronic hypersensitivity disease development in workers.
Journal of Immunology | 2017
Caroline Turcotte; Simona Zarini; Stéphanie Jean; Cyril Martin; Robert C. Murphy; David Marsolais; Michel Laviolette; Marie-Renée Blanchet; Nicolas Flamand
The endocannabinoids 2-arachidonoyl-glycerol and N-arachidonoyl-ethanolamine mediate an array of pro- and anti-inflammatory effects. These effects are related, in part, to their metabolism by eicosanoid biosynthetic enzymes. For example, N-arachidonoyl-ethanolamine and 2-arachidonoyl-glycerol can be metabolized by cyclooxygenase-2 into PG-ethanolamide (PG-EA) and PG-glycerol (PG-G), respectively. Although PGE2 is a recognized suppressor of neutrophil functions, the impact of cyclooxygenase-derived endocannabinoids such as PGE2-EA or PGE2-G on neutrophils is unknown. This study’s aim was to define the effects of these mediators on neutrophil functions and the underlying cellular mechanisms involved. We show that PGE2-G, but not PGE2-EA, inhibits leukotriene B4 biosynthesis, superoxide production, migration, and antimicrobial peptide release. The effects of PGE2-G were prevented by EP1/EP2 receptor antagonist AH-6809 but not the EP4 antagonist ONO-AE2-227. The effects of PGE2-G required its hydrolysis into PGE2, were not observed with the non-hydrolyzable PGE2-serinol amide, and were completely prevented by methyl-arachidonoyl-fluorophosphate and palmostatin B, and partially prevented by JZL184 and WWL113. Although we could detect six of the documented PG-G hydrolases in neutrophils by quantitative PCR, only ABHD12 and ABHD16A were detected by immunoblot. Our pharmacological data, combined with our protein expression data, did not allow us to pinpoint one PGE2-G lipase, and rather support the involvement of an uncharacterized lipase and/or of multiple hydrolases. In conclusion, we show that PGE2-G inhibits human neutrophil functions through its hydrolysis into PGE2, and by activating the EP2 receptor. This also indicates that neutrophils could regulate inflammation by altering the balance between PG-G and PG levels in vivo.
Frontiers in Pharmacology | 2016
Caroline Turcotte; Marie-Renée Blanchet; Michel Laviolette; Nicolas Flamand
Since the identification of cannabinoid receptors in the 1990s, a research field has been dedicated to exploring the role of the cannabinoid system in immunity and the inflammatory response in human tissues and animal models. Although the cannabinoid system is present and crucial in many human tissues, studying the impact of cannabinoids on the lungs is particularly relevant because of their contact with exogenous cannabinoids in the context of marijuana consumption. In the past two decades, the scientific community has gathered a large body of evidence supporting that the activation of the cannabinoid system alleviates pain and reduces inflammation. In the context of lung inflammation, exogenous and endogenous cannabinoids have shown therapeutic potential because of their inhibitory effects on immune cell recruitment and functions. On the other hand, cannabinoids were shown to be deleterious to lung function and to impact respiratory pathogen clearance. In this review, we present the existing data on the regulation of lung immunity and inflammation by phytocannabinoids, synthetic cannabinoids and endocannabinoids.
Journal of Applied Physiology | 2015
Audrey Lee-Gosselin; David Gendron; Marie-Renée Blanchet; David Marsolais; Ynuk Bossé
Airway hyperresponsiveness to a spasmogenic challenge such as methacholine, and an increased baseline tone measured by the reversibility of airway obstruction with a bronchodilator, are two common features of asthma. However, whether the increased tone influences the degree of airway responsiveness to a spasmogen is unclear. Herein, we hypothesized that increased tone augments airway responsiveness in vivo by increasing the contractile capacity of airway smooth muscle (ASM). Anesthetized, tracheotomized, paralyzed, and mechanically ventilated mice were either exposed (experimental group) or not (control group) to tone for 20 min, which was elicited by nebulizing serial small doses of methacholine. Respiratory system resistance was monitored during this period and the peak response to a large cumulative dose of methacholine was then measured at the end of 20 min to assess and compare the level of airway responsiveness between groups. To confirm direct ASM involvement, the contractile capacity of excised murine tracheas was measured with and without preexposure to tone elicited by either methacholine or a thromboxane A2 mimetic (U46619). Distinct spasmogens were tested because the spasmogens liable for increased tone in asthma are likely to differ. The results indicate that preexposure to tone increases airway responsiveness in vivo by 126 ± 37% and increases the contractile capacity of excised tracheas ex vivo by 23 ± 4% for methacholine and 160 ± 63% for U46619. We conclude that an increased tone, regardless of whether it is elicited by a muscarinic agonist or a thromboxane A2 mimetic, may contribute to airway hyperresponsiveness by increasing the contractile capacity of ASM.
Pulmonary Pharmacology & Therapeutics | 2017
David Gendron; Anne-Marie Lemay; Pascale Blais Lecours; Valérie Perreault-Vallières; Carole-Ann Huppé; Ynuk Bossé; Marie-Renée Blanchet; Geneviève Dion; David Marsolais
Fibrosis complicates numerous pathologies including interstitial lung diseases. Sphingosine analogs such as FTY720 can alleviate lung injury-induced fibrosis in murine models. Contradictorily, FTY720 also promotes inxa0vitro processes normally leading to fibrosis and high doses inxa0vivo foster lung fibrosis by enhancing vascular leakage into the lung. The goal of this study was to determine the effect of low doses of FTY720 on lung fibrosis triggered by an acute injury in mice. We first defined the time-boundaries delimiting the inflammatory and remodelling phases of an injury elicited by bleomycin based on neutrophil counts, total lung capacity and lung stiffness. Thereafter, FTY720 (0.1xa0mg/kg) was delivered during either the inflammatory or the remodelling phases of bleomycin-induced injury. While FTY720 decreased fibrosis by 60% and lung stiffness by 28% when administered during the inflammatory phase, it increased fibrosis (2.1-fold) and lung stiffness (1.7-fold) when administered during the remodelling phase. FTY720-induced worsening of fibrosis was associated with an increased expression of connective tissue growth factor, but not with vascular leakage into the lung. Thus, the timing of FTY720 delivery following a bleomycin-induced lung injury determines pro-vs anti-fibrotic outcomes.
PLOS ONE | 2017
Benoit Egarnes; Marie-Renée Blanchet; Jean Gosselin
The transcription factor NR4A1 has emerged as a pivotal regulator of the inflammatory response and immune homeostasis. Although contribution of NR4A1 in the innate immune response has been demonstrated, its role in host defense against viral infection remains to be investigated. In the present study, we show that administration of cytosporone B (Csn-B), a specific agonist of NR4A1, to mice infected with influenza virus (IAV) reduces lung viral loads and improves pulmonary function. Our results demonstrate that administration of Csn-B to naive mice leads to a modest production of type 1 IFN. However, in IAV-infected mice, such production of IFNs is markedly increased following treatment with Csn-B. Our study also reveals that alveolar macrophages (AMs) appear to have a significant role in Csn-B effects, since selective depletion of AMs with clodronate liposome correlates with a marked reduction of IFN production, viral clearance and morbidity in IAV-infected mice. Furthermore, when reemergence of AMs is observed following clodronate liposome administration, an increased production of IFNs was detected in bronchoalveolar fluids of IAV-infected mice treated with Csn-B, supporting the contribution of AMs in Csn-B effects. While treatment of mice with Csn-B induces phosphorylation of transcriptional factors IRF3 and IRF7, the latter appears to be less indispensable since effects of Csn-B treatment on the synthesis of IFNs were slightly affected in IAV-infected mice lacking functional IRF7. Together, our results highlight the capacity of Csn-B and consequently of NR4A1 transcription factor in controlling IAV infection.