Marie-Rose Van Calsteren
Agriculture and Agri-Food Canada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Rose Van Calsteren.
International Journal of Biological Macromolecules | 1999
André Bégin; Marie-Rose Van Calsteren
Antimicrobial films were prepared by dissolving chitosan into hydrochloric, formic, acetic, lactic and citric acid solutions. Below 40 degrees C, the counter ions could be classified into two groups based on their effect on zero-shear-rate viscosity in 2% solutions of organic acids. Chloride and citrate produced solutions with much lower viscosities than formate, acetate and lactate. At higher temperatures, these differences vanished, and the activation energies of viscous flow were all similar between 40 and 60 degrees C. Films prepared from these solutions were evaluated in tension for Youngs modulus, stress and elongation at yield and break points. Films made from hydrochloric, formic and acetic acids were hard and brittle, whereas those from lactic and citric acids were soft and could be stretched. Good correlation was found between Youngs modulus and volume of the counter ion. Film properties are essentially governed by the volume of the counter ion and not by the interactions between this counter ion and the macromolecule. Results suggest that acetate has the maximum molecular volume above which the film strength decreases very rapidly.
Biochemical Journal | 2002
Marie-Rose Van Calsteren; Corinne Pau-Roblot; André Bégin; Denis Roy
Exopolysaccharides (EPSs) were isolated and purified from Lactobacillus rhamnosus strains RW-9595M, which has been shown to possess cytokine-stimulating activity, and R grown under various fermentation conditions (carbon source, incubation temperature and duration). Identical (1)H NMR spectra were obtained in all cases. Molecular masses were determined by gel permeation chromatography. The primary structure was elucidated using chemical and spectroscopic techniques. Organic acid, monosaccharide and absolute configuration analyses gave the following composition: pyruvate, 1; D-glucose, 2; D-galactose, 1; and l-rhamnose, 4. Methylation analysis indicated the presence of three residues of 3-linked rhamnose, and one residue each of 2,3-linked rhamnose, 2-linked glucose, 3-linked glucose and 4,6-linked galactose. The EPS was submitted to periodate oxidation followed by borohydride reduction. Monosaccharide analysis of the resulting polysaccharide gave the new composition: rhamnose, 4; and glucose, 1. Methylation analysis confirmed the loss of the 2-linked glucose and 4,6-linked galactose residues. On the basis of one- and two-dimensional (1)H and (13)C NMR data, the structure of the native EPS was consistent with the following heptasaccharide repeating unit: [3Rha alpha-3Glc beta-3[Gal4,6(R)Py alpha-2]Rha alpha-3Rha alpha-3Rha alpha-2Glc alpha-](n) where Rha corresponds to rhamnose (6-deoxymannose) and Py corresponds to pyruvate acetal. Complete (1)H and (13)C assignments are reported for the native and the corresponding pyruvate-hydrolysed polysaccharide. Electrospray MS and MS/MS data are given for the oligosaccharide produced by Smith degradation.
Biochemistry and Cell Biology | 2010
Marie-Rose Van Calsteren; Fleur Gagnon; Sonia Lacouture; Nahuel Fittipaldi; Marcello GottschalkM. Gottschalk
The capsular polysaccharide (CPS) of Streptococcus suis serotype 14 was purified, chemically modified, and characterized. Sugar and absolute configuration analyses gave the following CPS composition: D-Gal, 3; D-Glc, 1; D-GlcNAc, 1; D-Neu5Ac, 1. The Sambucus nigra lectin, which recognizes the Neu5Ac(α2-6)Gal/GalNAc sequence, showed binding to the native CPS. Sialic acid was found to be terminal, and the CPS was quantitatively desialylated by mild acid hydrolysis. It was also submitted to periodate oxidation followed by borohydride reduction and Smith degradation. Sugar and methylation analyses, (1)H and (13)C nuclear magnetic resonance, and mass spectrometry of the native CPS or of its specifically modified products allowed to determine the repeating unit sequence: [6)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-3)]Gal(β1-3)Gal(β1-4)Glc(β1-](n). S. suis serotype 14 CPS has an identical sialic acid-containing side chain as serotype 2 CPS, but differs by the absence of rhamnose in its composition. The same side chain is also present in group B Streptococcus type Ia CPS, except that in the latter sialic acid is 2,3- rather than 2,6-linked to the following galactose. A correlation between the S. suis CPS sequence and genes of the serotype 14 cps locus encoding putative glycosyltransferases and polymerase responsible for the biosynthesis of the repeating unit is proposed.
Infection and Immunity | 2012
Mathieu Houde; Marcelo Gottschalk; Fleur Gagnon; Marie-Rose Van Calsteren; Mariela Segura
ABSTRACT Streptococcus suis type 2 is a major swine pathogen and a zoonotic agent, causing meningitis in both swine and humans. S. suis infects the host through the respiratory route, reaches the bloodstream, and persists until breaching into the central nervous system. The capsular polysaccharide (CPS) of S. suis type 2 is considered a key virulence factor of the bacteria. Though CPS allows S. suis to adhere to the membrane of cells of the immune system, it provides protection against phagocytosis. In fact, nonencapsulated mutants are easily internalized and killed by macrophages and dendritic cells. The objective of this work was to study the molecular mechanisms by which the CPS of S. suis prevents phagocytosis. By using latex beads covalently linked with purified CPS, it was shown that CPS itself was sufficient to inhibit entry of both latex beads and bystander fluorescent beads into macrophages. Upon contact with macrophages, encapsulated S. suis was shown to destabilize lipid microdomains at the cell surface, to block nitric oxide (NO) production during infection, and to prevent lactosylceramide accumulation at the phagocytic cup during infection. In contrast, the nonencapsulated mutant was easily internalized via lipid rafts, in a filipin-sensitive manner, leading to lactosylceramide recruitment and strong NO production. This is the first report to identify a role for CPS in lipid microdomain stability and to recognize an interaction between S. suis and lactosylceramide in phagocytes.
Infection and Immunity | 2013
Cynthia Calzas; Guillaume Goyette-Desjardins; Paul Lemire; Fleur Gagnon; Claude Lachance; Marie-Rose Van Calsteren; Mariela Segura
ABSTRACT Streptococcus agalactiae (also known as group B Streptococcus [GBS]) and Streptococcus suis are encapsulated streptococci causing severe septicemia and meningitis. Bacterial capsular polysaccharides (CPSs) are poorly immunogenic, but anti-CPS antibodies are essential to the host defense against encapsulated bacteria. The mechanisms underlying anti-CPS antibody responses are not fully elucidated, but the biochemistry of CPSs, particularly the presence of sialic acid, may have an immunosuppressive effect. We investigated the ability of highly purified S. suis and GBS native (sialylated) CPSs to activate dendritic cells (DCs), which are crucial actors in the initiation of humoral immunity. The influence of CPS biochemistry was studied using CPSs extracted from different serotypes within these two streptococcal species, as well as desialylated CPSs. No interleukin-1β (IL-1β), IL-6, IL-12p70, tumor necrosis factor alpha (TNF-α), or IL-10 production was observed in S. suis or GBS CPS-stimulated DCs. Moreover, these CPSs exerted immunosuppressive effects on DC activation, as a diminution of gamma interferon (IFN-γ)-induced B cell-activating factor of the tumor necrosis factor family (BAFF) expression was observed in CPS-pretreated cells. However, S. suis and GBS CPSs induced significant production of CCL3, via partially Toll-like receptor 2 (TLR2)- and myeloid differentiation factor 88 (MyD88)-dependent pathways, and CCL2, via TLR-independent mechanisms. No major influence of CPS biochemistry was observed on the capacity to induce chemokine production by DCs, indicating that DCs respond to these CPSs in a patterned way rather than a structure-dedicated manner.
Microbes and Infection | 2012
Marie-Pier Lecours; Nahuel Fittipaldi; Daisuke Takamatsu; Masatoshi Okura; Mariela Segura; Guillaume Goyette-Desjardins; Marie-Rose Van Calsteren; Marcelo Gottschalk
The capsular polysaccharide is a critical virulence factor of the swine and zoonotic pathogen Streptococcus suis serotype 2. The capsule of this bacterium is composed of five different sugars, including terminal sialic acid. To evaluate the role of sialic acid in the pathogenesis of the infection, the neuC gene, encoding for an enzyme essential for sialic acid biosynthesis, was inactivated in a highly virulent S. suis serotype 2 strain. Using transmission electron microscopy, it was shown that inactivation of neuC resulted in loss of expression of the whole capsule. Compared to the parent strain, the ΔneuC mutant strain was more phagocytosed by macrophages and was also severely impaired in virulence in a mouse infection model. Both native and desialylated S. suis serotype 2 purified capsular polysaccharides were recognized by a polyclonal anti-whole cell S. suis serotype 2 serum and a monospecific polyclonal anti-capsule serotype 2 serum. In contrast, only the native capsular polysaccharide was recognized by a monoclonal antibody specific for the sialic acid moiety of the serotype 2 capsule. Together, our results infer that sialylation of S. suis serotype 2 may be essential for capsule expression, but that this sugar is not the main epitope of this serotype.
Journal of Biological Chemistry | 2016
Marie-Rose Van Calsteren; Guillaume Goyette-Desjardins; Fleur Gagnon; Masatoshi Okura; Daisuke Takamatsu; René Roy; Marcelo Gottschalk; Mariela Segura
The capsular polysaccharide (CPS) is a major virulence factor in many encapsulated pathogens, as it is the case for Streptococcus suis, an important swine pathogen and emerging zoonotic agent. Moreover, the CPS is the antigen at the origin of S. suis classification into serotypes. Hence, analyses of the CPS structure are an essential step to dissect its role in virulence and the serological relations between important serotypes. Here, the CPSs of serotypes 1 and 1/2 were purified and characterized for the first time. Chemical and spectroscopic data gave the following repeating unit sequences: [6)[Neu5Ac(α2–6)GalNAc(β1–4)GlcNAc(β1–3)]Gal(β1–3)Gal(β1–4)Glc(β1–]n (serotype 1) and [4)[Neu5Ac(α2–6)GalNAc(β1–4)GlcNAc(β1–3)]Gal(β1–4)[Gal(α1–3)]Rha(β1–4)Glc(β1–]n (serotype 1/2). The Sambucus nigra lectin, which recognizes the Neu5Ac(α2–6)Gal/GalNAc sequence, showed binding to both CPSs. Compared with previously characterized serotype 14 and 2 CPSs, N-acetylgalactosamine replaces galactose as the sugar bearing the sialic acid residue in the side chain. Serological analyses of the cross-reaction of serotype 1/2 with serotypes 1 and 2 and that between serotypes 1 and 14 suggested that the side chain, and more particularly the terminal sialic acid, constitutes one important epitope for serotypes 1/2 and 2. The side chain is also an important serological determinant for serotype 1, yet sialic acid seems to play a limited role. In contrast, the side chain does not seem to be part of a major epitope for serotype 14. These results contribute to the understanding of the relationship between S. suis serotypes and provide the basis for improving diagnostic tools.
New Journal of Chemistry | 2009
Pascal Y. Vuillaume; Mélanie Brunelle; C. Geraldine Bazuin; Brian G. Talbot; André Bégin; Marie-Rose Van Calsteren; Sylvette Laurent-Lewandowski
Amphiphilic dimethylaminopyridinium alkyl polymethacrylates (aPPs) were tested for gene complexation, cell cytotoxicity and in vitro gene expression for use as gene delivery agents. The aminopyridinium groups neutralized by bromide or octylsulfonate counterions were terminal moieties of side-chain spacers containing 8, 12 or 16 methylene units. This investigation measured the impact of the spacer length and the chemical nature of the counterion on the physicochemical properties and biological activity of the polyplexes formed by the complexation with DNA. The aPPs self-assembled with DNA by neutralizing the DNA phosphate charges through the pyridinium moieties. The degree of DNA condensation was higher for shorter spacer (n = 8, 12) and bromide-neutralized aPPs. Several aPP–DNA complexes formed well-defined nanoparticles, which were usually, but not always, positively charged. Their sizes ranged from 30 to 150 nm and in some cases had an internal lamellar structure visible by TEM. All of the aPPs were found to be much less cytotoxic than branched poly(ethyleneimine) [(PEI), 25 kDa]. The degree of cytotoxicity of the aPPs depended mildly on their spacer length and counterion: a longer spacer (n = 16) decreased the cell viability more than shorter spacers and, at the highest aPP concentrations tested, bromide counterions more than octylsulfonate counterions. The transfection efficiency also depended on the spacer length and counterion type. Polyplexes obtained from the bromide-neutralized aPPs with the n = 12 spacer at an aPP/DNA weight ratio of 2.5, for which negatively charged nanoparticles were formed, were found to be as efficient as PEI-based polyplexes. Interestingly, this demonstrates that endosomolytic fragments and positively charged polyplex surfaces are not required for efficient gene expression.
Carbohydrate Polymers | 2017
Johnny Birch; Hörður Kári Harðarson; Sanaullah Khan; Marie-Rose Van Calsteren; Richard Ipsen; Christel Garrigues; Kristoffer Almdal; Maher Abou Hachem; Birte Svensson
Interactions of exopolysaccharides and proteins are of great importance in food science, but complicated to analyze and quantify at the molecular level. A surface plasmon resonance procedure was established to characterize binding of seven structure-determined, branched hetero-exopolysaccharides (HePSs) of 0.14-4.9MDa from lactic acid bacteria to different milk proteins (β-casein, κ-casein, native and heat-treated β-lactoglobulin) at pH 4.0-5.0. Maximum binding capacity (RUmax) and apparent affinity (KA,app) were HePS- and protein-dependent and varied for example 10- and 600-fold, respectively, in the complexation with native β-lactoglobulin at pH 4.0. Highest RUmax and KA,app were obtained with heat-treated β-lactoglobulin and β-casein, respectively. Overall, RUmax and KA,app decreased 6- and 20-fold, respectively, with increasing pH from 4.0 to 5.0. KA,app was influenced by ionic strength and temperature, indicating that polar interactions stabilize HePS-protein complexes. HePS size as well as oligosaccharide repeat structure, conferring chain flexibility and hydrogen bonding potential, influence the KA,app.
Biomacromolecules | 2017
Sanaullah Khan; Johnny Birch; Pernille Harris; Marie-Rose Van Calsteren; Richard Ipsen; Günther H. Peters; Birte Svensson; Kristoffer Almdal
Molecular structures of exopolysaccharides are required to understand their functions and the relationships between the structure and physical and rheological properties. Small-angle X-ray scattering and dynamic light scattering were used in conjunction with molecular modeling to characterize solution structures of three lactic acid bacterial heteroexopolysaccharides (HePS-1, HePS-2, and HePS-3). Values of radius of gyration RG, cross-sectional radius of gyration RXS, approximate length L, and hydrodynamic diameter were not directly proportional to the molar mass and indicated the HePSs adopted a compact coil-like rather than an extended conformation. Constrained molecular modeling of 15000 randomized HePS-1 conformers resulted in five best-fit structures with R factor of 3.9-4.6% revealing random coil-like structure. Φ and Ψ angle analysis of glycosidic linkages in HePS-1 structures suggests Galf residues significantly influence the conformation. Ab initio scattering modeling of HePS-2 and HePS-3 gave excellent curve fittings with χ2 of 0.43 and 0.34 for best-fit models, respectively, compatible with coil-like conformation. The findings disclose solution behavior of HePS relevant for their interactions with biomacromolecules, for example, milk proteins.