Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie Sigurd Hasemann is active.

Publication


Featured researches published by Marie Sigurd Hasemann.


Journal of Experimental Medicine | 2005

Loss of C/EBP alpha cell cycle control increases myeloid progenitor proliferation and transforms the neutrophil granulocyte lineage

Bo T. Porse; David Bryder; Kim Theilgaard-Mönch; Marie Sigurd Hasemann; Kristina Anderson; Inge Damgaard; Sten Eirik W. Jacobsen; Claus Nerlov

CCAAT/enhancer binding protein (C/EBP)α is a myeloid-specific transcription factor that couples lineage commitment to terminal differentiation and cell cycle arrest, and is found mutated in 9% of patients who have acute myeloid leukemia (AML). We previously showed that mutations which dissociate the ability of C/EBPα to block cell cycle progression through E2F inhibition from its function as a transcriptional activator impair the in vivo development of the neutrophil granulocyte and adipose lineages. We now show that such mutations increase the capacity of bone marrow (BM) myeloid progenitors to proliferate, and predispose mice to a granulocytic myeloproliferative disorder and transformation of the myeloid compartment of the BM. Both of these phenotypes were transplantable into lethally irradiated recipients. BM transformation was characterized by a block in granulocyte differentiation, accumulation of myeloblasts and promyelocytes, and expansion of myeloid progenitor populations—all characteristics of AML. Circulating myeloblasts and hepatic leukocyte infiltration were observed, but thrombocytopenia, anemia, and elevated leukocyte count—normally associated with AML—were absent. These results show that disrupting the cell cycle regulatory function of C/EBPα is sufficient to initiate AML-like transformation of the granulocytic lineage, but only partially the peripheral pathology of AML.


PLOS Genetics | 2014

C/EBPα Is Required for Long-Term Self-Renewal and Lineage Priming of Hematopoietic Stem Cells and for the Maintenance of Epigenetic Configurations in Multipotent Progenitors

Marie Sigurd Hasemann; Felicia Kathrine Bratt Lauridsen; Johannes Waage; Janus S. Jakobsen; Anne Katrine Frank; Mikkel Bruhn Schuster; Nicolas Rapin; Frederik Otzen Bagger; Philipp S. Hoppe; Timm Schroeder; Bo T. Porse

Transcription factors are key regulators of hematopoietic stem cells (HSCs) and act through their ability to bind DNA and impact on gene transcription. Their functions are interpreted in the complex landscape of chromatin, but current knowledge on how this is achieved is very limited. C/EBPα is an important transcriptional regulator of hematopoiesis, but its potential functions in HSCs have remained elusive. Here we report that C/EBPα serves to protect adult HSCs from apoptosis and to maintain their quiescent state. Consequently, deletion of Cebpa is associated with loss of self-renewal and HSC exhaustion. By combining gene expression analysis with genome-wide assessment of C/EBPα binding and epigenetic configurations, we show that C/EBPα acts to modulate the epigenetic states of genes belonging to molecular pathways important for HSC function. Moreover, our data suggest that C/EBPα acts as a priming factor at the HSC level where it actively promotes myeloid differentiation and counteracts lymphoid lineage choice. Taken together, our results show that C/EBPα is a key regulator of HSC biology, which influences the epigenetic landscape of HSCs in order to balance different cell fate options.


Journal of Experimental Medicine | 2014

Initiation of MLL-rearranged AML is dependent on C/EBPα

Ewa Ohlsson; Marie Sigurd Hasemann; Anton Willer; Felicia Kathrine Bratt Lauridsen; Nicolas Rapin; Johan Jendholm; Bo T. Porse

C/EBPα collaborates with MLL-ENL to activate a group of genes that, together with Hoxa9 and Meis1, are responsible for the early events that transforms normal hematopoietic cells into leukemic cells


Molecular and Cellular Biology | 2006

The proline-histidine-rich CDK2/CDK4 interaction region of C/EBPalpha is dispensable for C/EBPalpha-mediated growth regulation in vivo.

Bo T. Porse; Thomas Åskov Pedersen; Marie Sigurd Hasemann; Mikkel Bruhn Schuster; Peggy Kirstetter; Tom Luedde; Inge Damgaard; Elke Kurz; Charlotte Karlskov Schjerling; Claus Nerlov

ABSTRACT The C/EBPα transcription factor regulates growth and differentiation of several tissues during embryonic development. Several hypotheses as to how C/EBPα inhibits cellular growth in vivo have been derived, mainly from studies of tissue culture cells. In fetal liver it has been proposed that a short, centrally located, 15-amino-acid proline-histidine-rich region (PHR) of C/EBPα is responsible for the growth-inhibitory function of the protein through its ability to interact with CDK2 and CDK4, thereby inhibiting their activities. Homozygous CebpaΔPHR/ΔPHR (ΔPHR) mice, carrying a modified cebpa allele lacking amino acids 180 to 194, were born at the Mendelian ratio, reached adulthood, and displayed no apparent adverse phenotypes. When fetal livers from the ΔPHR mice were analyzed for their expression of cell cycle markers, bromodeoxyuridine incorporation, cyclin-dependent kinase 2 kinase activity, and global gene expression, we failed to detect any cell cycle or developmental differences between the ΔPHR mice and their control littermates. These in vivo data demonstrate that any C/EBPα-mediated growth repression via the PHR as well as the basic region is dispensable for proper embryonic development of, and cell cycle control in, the liver. Surprisingly, control experiments performed in C/EBPα null fetal livers yielded similar results.


Blood | 2014

Regulation of Trib2 by an E2F1-C/EBPα feedback loop in AML cell proliferation.

Loveena Rishi; Maura Hannon; Mara Salomé; Marie Sigurd Hasemann; Anne-Katrine Frank; Joana Campos; Jennifer Timoney; Caitriona O'Connor; Mary Cahill; Bo T. Porse; Karen Keeshan

The loss of regulation of cell proliferation is a key event in leukemic transformation, and the oncogene tribbles (Trib)2 is emerging as a pivotal target of transcription factors in acute leukemias. Deregulation of the transcription factor E2F1, normally repressed by CCAAT enhancer-binding protein α (C/EBPα)-p42, occurs in acute myeloid leukemia (AML), resulting in the perturbation of cell cycle and apoptosis, emphasizing its importance in the molecular pathogenesis of AML. Here we show that E2F family members directly regulate Trib2 in leukemic cells and identify a feedback regulatory loop for E2F1, C/EBPα, and Trib2 in AML cell proliferation and survival. Further analyses revealed that E2F1-mediated Trib2 expression was repressed by C/EBPα-p42, and in normal granulocyte/macrophage progenitor cells, we detect C/EBPα bound to the Trib2 promoter. Pharmacological inhibition of the cell cycle or Trib2 knockdown resulted in a block in AML cell proliferation. Our work proposes a novel paradigm whereby E2F1 plays a key role in the regulation of Trib2 expression important for AML cell proliferation control. Importantly, we identify the contribution of dysregulated C/EBPα and E2F1 to elevated Trib2 expression and leukemic cell survival, which likely contributes to the initiation and maintenance of AML and may have significant implications for normal and malignant hematopoiesis.


Genes & Development | 2015

ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation.

Kasper Jermiin Knudsen; Matilda Rehn; Marie Sigurd Hasemann; Nicolas Rapin; Frederik Otzen Bagger; Ewa Ohlsson; Anton Willer; Anne-Katrine Frank; Elisabeth Søndergaard; Johan Jendholm; Lina A. Thoren; Julie Lee; Justyna Rak; Kim Theilgaard-Mönch; Bo T. Porse

The balance between self-renewal and differentiation is crucial for the maintenance of hematopoietic stem cells (HSCs). Whereas numerous gene regulatory factors have been shown to control HSC self-renewal or drive their differentiation, we have relatively few insights into transcription factors that serve to restrict HSC differentiation. In the present work, we identify ETS (E-twenty-six)-related gene (ERG) as a critical factor protecting HSCs from differentiation. Specifically, loss of Erg accelerates HSC differentiation by >20-fold, thus leading to rapid depletion of immunophenotypic and functional HSCs. Molecularly, we could demonstrate that ERG, in addition to promoting the expression of HSC self-renewal genes, also represses a group of MYC targets, thereby explaining why Erg loss closely mimics Myc overexpression. Consistently, the BET domain inhibitor CPI-203, known to repress Myc expression, confers a partial phenotypic rescue. In summary, ERG plays a critical role in coordinating the balance between self-renewal and differentiation of HSCs.


Blood | 2008

Mutation of C/EBPalpha predisposes to the development of myeloid leukemia in a retroviral insertional mutagenesis screen.

Marie Sigurd Hasemann; Inge Damgaard; Mikkel Bruhn Schuster; Kim Theilgaard-Mönch; Annette Balle Sørensen; Alan Mrsic; Thijs Krugers; Bauke Ylstra; Finn Skou Pedersen; Claus Nerlov; Bo T. Porse

The CCAAT enhancer binding protein alpha (C/EBPalpha) is an important myeloid tumor suppressor that is frequently mutated in human acute myeloid leukemia (AML). We have previously shown that mice homozygous for the E2F repression-deficient Cebpa(BRM2) allele develop nonfatal AML with long latency and incomplete penetrance, suggesting that accumulation of secondary mutations is necessary for disease progression. Here, we use SRS19-6-driven retroviral insertional mutagenesis to compare the phenotypes of leukemias arising in Cebpa(+/+), Cebpa(+/BRM2), and Cebpa(BRM2/BRM2) mice, with respect to disease type, latency of tumor development, and identity of the retroviral insertion sites (RISs). Both Cebpa(+/BRM2) and Cebpa(BRM2/BRM2) mice preferentially develop myeloid leukemias, but with differing latencies, thereby demonstrating the importance of gene dosage. Determination of RISs led to the identification of several novel candidate oncogenes, some of which may collaborate specifically with the E2F repression-deficient allele of Cebpa. Finally, we used an in silico pathway analysis approach to extract additional information from single RISs, leading to the identification of signaling pathways which were preferentially deregulated in a disease- and/or genotype-specific manner.


PLOS ONE | 2014

C/EBPα is dispensable for the ontogeny of PD-1+ CD4+ memory T cells but restricts their expansion in an age-dependent manner.

Ida Christine Norrie; Ewa Ohlsson; Olaf Nielsen; Marie Sigurd Hasemann; Bo T. Porse

Ageing and cancer is often associated with altered T cell distributions and this phenomenon has been suggested to be the main driver in the development of immunosenescence. Memory phenotype PD-1+ CD4+ T cells accumulate with age and during leukemic development, and they might account for the attenuated T cell response in elderly or diseased individuals. The transcription factor C/EBPα has been suggested to be responsible for the accumulation as well as for the senescent features of these cells including impaired TCR signaling and decreased proliferation. Thus modulating the activity of C/EBPα could potentially target PD-1+ CD4+ T cells and consequently, impede the development of immunosenescence. To exploit this possibility we tested the importance of C/EBPα for the development of age-dependent PD-1+ CD4+ T cells as well as its role in the accumulation of PD-1+ CD4+ T cells during leukemic progression. In contrast to earlier suggestions, we find that loss of C/EBPα expression in the lymphoid compartment led to an increase of PD-1+ CD4+ T cells specifically in old mice, suggesting that C/EBPα repress the accumulation of these cells in elderly by inhibiting their proliferation. Furthermore, C/EBPα-deficiency in the lymphoid compartment had no effect on leukemic development and did not affect the accumulation of PD-1+ CD4+ T cells. Thus, in addition to contradict earlier suggestions of a role for C/EBPα in immunosenescence, these findings efficiently discard the potential of using C/EBPα as a target for the alleviation of ageing/cancer-associated immunosenescence.


PLOS ONE | 2012

Phosphorylation of serine 248 of C/EBPα is dispensable for myelopoiesis but its disruption leads to a low penetrant myeloid disorder with long latency.

Marie Sigurd Hasemann; Mikkel Bruhn Schuster; Anne Katrine Frank; Kim Theilgaard-Mönch; Thomas Åskov Pedersen; Claus Nerlov; Bo T. Porse

Background Transcription factors play a key role in lineage commitment and differentiation of stem cells into distinct mature cells. In hematopoiesis, they regulate lineage-specific gene expression in a stage-specific manner through various physical and functional interactions with regulatory proteins that are simultanously recruited and activated to ensure timely gene expression. The transcription factor CCAAT/enhancer binding protein α (C/EBPα) is such a factor and is essential for the development of granulocytic/monocytic cells. The activity of C/EBPα is regulated on several levels including gene expression, alternative translation, protein interactions and posttranslational modifications, such as phosphorylation. In particular, the phosphorylation of serine 248 of the transactivation domain has been shown to be of crucial importance for granulocytic differentiation of 32Dcl3 cells in vitro. Methodology/Principal Findings Here, we use mouse genetics to investigate the significance of C/EBPα serine 248 in vivo through the construction and analysis of Cebpa S248A/S248A knock-in mice. Surprisingly, 8-week old Cebpa S248A/S248A mice display normal steady-state hematopoiesis including unaltered development of mature myeloid cells. However, over time some of the animals develop a hematopoietic disorder with accumulation of multipotent, megakaryocytic and erythroid progenitor cells and a mild impairment of differentiation along the granulocytic-monocytic lineage. Furthermore, BM cells from Cebpa S248A/S248A animals display a competitive advantage compared to wild type cells in a transplantation assay. Conclusions/Significance Taken together, our data shows that the substitution of C/EBPα serine 248 to alanine favors the selection of the megakaryocytic/erythroid lineage over the monocytic/granulocytic compartment in old mice and suggests that S248 phosphorylation may be required to maintain proper hematopoietic homeostasis in response to changes in the wiring of cellular signalling networks. More broadly, the marked differences between the phenotype of the S248A variant in vivo and in vitro highlight the need to exert caution when extending in vitro phenotypes to the more appropriate in vivo context.


Cell Reports | 2018

Enhancer and Transcription Factor Dynamics during Myeloid Differentiation Reveal an Early Differentiation Block in Cebpa null Progenitors

Sachin Pundhir; Felicia Kathrine Bratt Lauridsen; Mikkel Bruhn Schuster; Janus S. Jakobsen; Ying Ge; Erwin Marten Schoof; Nicolas Rapin; Johannes Waage; Marie Sigurd Hasemann; Bo T. Porse

Transcription factors PU.1 and CEBPA are required for the proper coordination of enhancer activity during granulocytic-monocytic (GM) lineage differentiation to form myeloid cells. However, precisely how these factors control the chronology of enhancer establishment during differentiation is not known. Through integrated analyses of enhancer dynamics, transcription factor binding, and proximal gene expression during successive stages of murine GM-lineage differentiation, we unravel the distinct kinetics by which PU.1 and CEBPA coordinate GM enhancer activity. We find no evidence of a pioneering function of PU.1 during late GM-lineage differentiation. Instead, we delineate a set of enhancers that gain accessibility in a CEBPA-dependent manner, suggesting a pioneering function of CEBPA. Analyses of Cebpa null bone marrow demonstrate that CEBPA controls PU.1 levels and, unexpectedly, that the loss of CEBPA results in an early differentiation block. Taken together, our data provide insights into how PU.1 and CEBPA functionally interact to drive GM-lineage differentiation.

Collaboration


Dive into the Marie Sigurd Hasemann's collaboration.

Top Co-Authors

Avatar

Bo T. Porse

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Rapin

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Ohlsson

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inge Damgaard

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge