Marie-Soleil Beaudoin
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie-Soleil Beaudoin.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013
Marie-Soleil Beaudoin; Laelie A. Snook; Alicia M. Arkell; Jeremy A. Simpson; Graham P. Holloway; David C. Wright
Resveratrol (RSV) is a polyphenolic compound suggested to have anti-diabetic properties. Surprisingly, little is known regarding the effects of RSV supplementation on adipose tissue (AT) metabolism in vivo. The purpose of this study was to assess the effects of RSV on mitochondrial content and respiration, glyceroneogenesis (GNG), and adiponectin secretion in adipose tissue from Zucker diabetic fatty (ZDF) rats. Five-week-old ZDF rats were fed a chow diet with (ZDF RSV) or without (ZDF chow) RSV (200 mg/kg body wt) for 6 wk. Changes in adipose tissue metabolism were assessed in subcutaneous (scAT) and intra-abdominal [retroperitoneal (rpWAT), epididymal (eWAT)] adipose tissue depots. ZDF RSV rats showed lower fasting glucose and higher circulating adiponectin, as well as lower glucose area under the curve during intraperitoneal glucose and insulin tolerance tests than ZDF chow. [¹⁴C]pyruvate incorporation into triglycerides and adiponectin secretion were higher in scAT from ZDF RSV rats, concurrent with increases in adipose tissue triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and the phosphorylation of pyruvate dehydrogenase-E1α (PDH) (Ser293) protein content in this depot. Moreover, uncoupled mitochondrial respiration and complex I and II-supported respiration were increased in both scAT and rpWAT, which correlated with increases in cytochrome c oxidase subunit IV (COX4) protein content. In vitro treatment of scAT with RSV (50 μmol/l; 24 h) induced pyruvate dehydrogenase kinase 4 (PDK4) and peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α) mRNA expression. Collectively, these data demonstrate that RSV can induce adipose tissue mitochondrial biogenesis in parallel with increases in GNG and adiponectin secretion.
PLOS ONE | 2012
Zhongxiao Wan; Ian R. W. Ritchie; Marie-Soleil Beaudoin; Laura Castellani; Catherine B. Chan; David C. Wright
Background Glyceroneogenesis is an important step in the control of fatty acid re-esterification with PEPCK and PDK4 being identified as key enzymes in this process. We have previously shown that glyceroneogenic enzymes such as PDK4 are rapidly induced in white adipose tissue during exercise. Recent studies have suggested that IL-6 regulates adipose tissue metabolism and gene expression during exercise. Interestingly, IL-6 has been reported to directly decrease PEPCK expression. The purpose of this investigation was to determine the role of IL-6 in modulating the effects of exercise on the expression of glyceroneogenic enzymes in mouse adipose tissue. We hypothesized that the exercise-mediated induction of PDK4 and PEPCK would be greater in adipose tissue from IL-6 deficient mice compared to wild type controls. Methodology and Principle Findings Treatment of cultured epididymal adipose tissue (eWAT) with IL-6 (150 ng/ml) increased the phosphorylation of AMPK, ACC and STAT3 and induced SOCS3 mRNA levels while decreasing PEPCK and PDK4 mRNA. AICAR decreased the expression of PDK4 and PEPCK. The activation of AMPK by IL-6 was independent of increases in lipolysis. An acute bout of treadmill running (15 meters/minute, 5% incline, 90 minutes) did not induce SOCS3 or increase phosphorylation of STAT3 in eWAT, indicating that IL-6 signalling was not activated. Exercise-induced increases in PEPCK and PDK4 mRNA expression were attenuated in eWAT from IL-6−/− mice in parallel with a greater relative increase in AMPK phosphorylation compared to exercised WT mice. These changes occurred independent of alterations in beta-adrenergic signalling in adipose tissue from IL-6−/− mice. Conclusions and Significance Our findings question the role of IL-6 signalling in adipose tissue during exercise and suggest an indirect effect of this cytokine in the regulation of adipose tissue gene expression during exercise.
Journal of Applied Physiology | 2014
Laura Castellani; Jared Root-McCaig; Scott Frendo-Cumbo; Marie-Soleil Beaudoin; David C. Wright
Exercise training reduces systemic and adipose tissue inflammation. However, these beneficial effects seem to be largely tied to reductions in adipose tissue mass. The purpose of the present study was to determine if exercise training confers a protective effect against an acute inflammatory challenge. We hypothesized that the induction of inflammatory markers, such as interleukin 6 (IL-6), suppressor of cytokine signaling 3 (SOCS3), and TNF-α by the beta-3 adrenergic agonist CL 316,243 would be reduced in adipose tissue from trained mice and this would be associated with reductions in transient receptor potential cation channel 4 (TRPV4), a protein recently shown to regulate the expression of proinflammatory cytokines. Exercise training (4 wk of treadmill running, 1 h/day, 5 days/wk) increased markers of skeletal muscle mitochondrial content and the induction of PPAR-gamma coactivator 1 alpha in epididymal adipose tissue. The mRNA expression of IL-6, SOCS3, and TNFα were not different in subcutaneous and epididymal adipose tissue from sedentary and trained mice; however, the CL 316,243-mediated induction of these genes was attenuated ∼50% in epididymal adipose tissue from trained mice as were increases in plasma IL-6. The effects of training were not explained by reductions in lipolytic responsiveness, but were associated with decreases in TRPV4 protein content. These results highlight a previously unappreciated anti-inflammatory effect of exercise training on adipose tissue immunometabolism and underscores the value of assessing adipose tissue inflammation in the presence of an inflammatory insult.
Journal of Nutrition | 2011
Marie-Soleil Beaudoin; Lindsay E. Robinson; Terry E. Graham
Lipid-induced insulin resistance has been investigated primarily with i.v. infusions, and caffeine-induced insulin resistance, with alkaloid caffeine. The effects of orally consumed lipids and coffee have not been established and to our knowledge have never been simultaneously investigated. The goals of this study were to determine whether an oral lipid challenge and caffeinated coffee would disrupt glucose homeostasis and to characterize their respective incretin responses. It was hypothesized that oral ingestion of saturated lipids would impair glucose tolerance and that caffeinated coffee would further hinder glucose management. Ten young, healthy males participated in 5 trials in a randomized, cross-over design. At time 0 h, they underwent an oral fat tolerance test (OFTT: 1 g lipid/kg body weight) or consumed water, followed 5 h later by caffeinated (5 mg/kg) coffee, decaffeinated coffee, or water. At 6 h, volunteers underwent an oral glucose tolerance test (OGTT). Consumption of the OFTT increased glucose concentrations (P < 0.05) after a subsequent OGTT. At 7 h, caffeinated coffee produced the highest glucose concentrations (P < 0.05). Glucagon-like peptide-1 active (GLP-1a) and glucose-dependent insulinotropic polypeptide (GIP) were both increased for up to 6 h in all OFTT trials (P < 0.05). Compared to all other treatments, caffeinated and decaffeinated coffee produced higher GLP-1a response at 6.25 h (P < 0.05), whereas only caffeinated coffee increased GIP secretion (P < 0.05). These results show that oral consumption of lipids and caffeinated coffee can independently and additively decrease glucose tolerance. Incretin hormones could explain at least in part this impaired glucose homeostasis.
The Journal of Physiology | 2014
Marie-Soleil Beaudoin; Christopher G. R. Perry; Alicia M. Arkell; Adrian Chabowski; Jeremy A. Simpson; David C. Wright; Graham P. Holloway
Dysfunctional mitochondrial respiration may contribute to the establishment of diabetic cardiomyopathy, but this remains controversial; resveratrol, a polyphenol compound, has been shown to recover heart contractile function in rodent models of high‐fat‐diet‐induced cardiac dysfunction. Therefore, we studied mitochondrial respiratory kinetic function in ZDF rats before overt diabetes and cardiac dysfunction manifested, and determined the efficacy of resveratrol to recover potential derangements in mitochondrial bioenergetics. We show that the electron transport chain functions normally in ZDF rats, as pyruvate and ADP respiratory kinetics were normal. In contrast, in ZDF rats, we show impairments in the sensitivity of mitochondria to lipids (palmitoyl‐CoA) as well as the accumulation of reactive lipids and increased mitochondrial reactive oxygen species (ROS) emission rates. Supplementation with resveratrol improved palmitoyl‐CoA respiratory kinetics and reactive lipid profiles, and normalized mitochondrial ROS emission rates.
The Journal of Physiology | 2013
Brennan K. Smith; Christopher G. R. Perry; Eric A.F. Herbst; Ian R. W. Ritchie; Marie-Soleil Beaudoin; Jeffrey C. Smith; P. Darrell Neufer; David C. Wright; Graham P. Holloway
• Disparity exists within the literature surrounding mitochondrial dysfunction and insulin resistance and previous reports have primarily examined mitochondrial function as a capacity measurement. • We show that submaximal ADP‐stimulated respiration rates are lower in ZDF rats, which coincides with decreased adenine nucleotide translocase 2 (ANT2) protein content. • Supplementation of ZDF rats with resveratrol improves skeletal muscle insulin sensitivity, increases submaximal ADP‐stimulated respiration rates and increases ANT2 protein content. • Improvements in the ability of ADP to attenuate mitochondrial reactive oxygen species (ROS) emission and cellular redox balance were also observed following resveratrol supplementation. • These data suggest that mitochondrial dysfunction is present in skeletal muscle insulin resistance when assessed at submaximal ADP concentrations and that ADP dynamics may influence skeletal muscle insulin sensitivity through alterations in the propensity for ROS formation.
Applied Physiology, Nutrition, and Metabolism | 2013
Marie-Soleil Beaudoin; Brian Allen; Gillian Mazzetti; Peter J. Sullivan; Terry E. Graham
The effects of alkaloid caffeine on insulin sensitivity have been investigated primarily in men, and with a single caffeine dose most commonly of 5-6 mg·kg(-1) of body weight (BW). It is unknown if the effects of caffeine on glucose homeostasis are sex-specific and (or) dose-dependent. This study examined whether caffeine ingestion would disrupt glucose homeostasis in a dose-dependent or threshold manner. It also examined whether sex-specific responses to caffeine exist. It was hypothesized that women would have an exaggerated response to caffeine, and that caffeine would only impair glucose metabolism once a threshold was reached. Twenty-four healthy volunteers (12 males, 12 females) participated in 4 trials, in a crossover, randomized, and double-blind fashion. They ingested caffeine (1, 3, or 5 mg·kg(-1) of BW) or placebo followed, 1 h later, by a 2-h oral glucose tolerance test. Glucose, insulin, C-peptide area under the curve (AUC), and insulin sensitivity index data were fitted to a segmented linear model to determine dose-responses. There were no differences between sexes for any endpoints. Regression slopes were significantly different from zero (p < 0.05) for glucose, insulin, and C-peptide AUCs, with thresholds being no different from zero. Increasing caffeine consumption by 1 mg·kg(-1) of BW increased insulin and C-peptide AUCs by 5.8% and 8.7%, respectively. Despite this exaggerated insulin response, glucose AUC increased by 11.2 mmol per 120 min·L(-1) for each mg·kg(-1) BW consumed. These results showed that caffeine ingestion disrupted insulin sensitivity in a dose-dependent fashion beginning at very low doses (0-1 mg·kg(-1) BW) in both healthy men and women.
American Journal of Physiology-endocrinology and Metabolism | 2014
Rebecca E. K. MacPherson; Laura Castellani; Marie-Soleil Beaudoin; David C. Wright
CL 316,243, a β3-adrenergic agonist, was developed as an antiobesity and diabetes drug and causes rapid decreases in blood glucose levels in mice. The mechanisms mediating this effect have not been fully elucidated; thus, the purpose of the current study was to examine the role of fatty acids and interleukin-6, reputed mediators of insulin secretion, in this process. To address this question, we used physiological and pharmacological approaches in combination with knockout mouse models. CL 316,243 treatment in male C57BL6 mice increased plasma fatty acids, glycerol, interleukin-6, and insulin and reduced blood glucose concentrations 2 h following injections. The ability of CL 316,243 to increase insulin and fatty acids and reduce glucose was preserved in interleukin-6-deficient mice. CL 316,243-induced drops in blood glucose occurred in parallel with increases in circulating fatty acids but prior to increases in plasma interleukin-6. CL 316,243-mediated increases in plasma insulin levels and reductions in blood glucose were attenuated when mice were pretreated with the lipase inhibitor nicotinic acid or in whole body adipose tissue triglyceride lipase knockout mice. Collectively, our findings demonstrate an important role for fatty acids in mediating the effects of CL 316,243 in mice. Not only do our results provide new insight into the mechanisms of action of CL 316,243, but they also hint at an unappreciated aspect of adipose tissue -pancreas cross-talk.
Journal of Applied Physiology | 2015
Robert S. Rogers; Marie-Soleil Beaudoin; Joshua L. Wheatley; David C. Wright; Paige C. Geiger
Heat treatments (HT) and the induction of heat shock proteins (HSPs) improve whole body and skeletal muscle insulin sensitivity while decreasing white adipose tissue (WAT) mass. However, HSPs in WAT have been understudied. The purpose of the present study was to examine patterns of HSP expression in WAT depots, and to examine the effects of a single in vivo HT on WAT metabolism. Male Wistar rats received HT (41°C, 20 min) or sham treatment (37°C), and 24 h later subcutaneous, epididymal, and retroperitoneal WAT depots (SCAT, eWAT, and rpWAT, respectively) were removed for ex vivo experiments and Western blotting. SCAT, eWAT, and rpWAT from a subset of rats were also cultured separately and received a single in vitro HT or sham treatment. HSP72 and HSP25 expression was greatest in more metabolically active WAT depots (i.e., eWAT and rpWAT) compared with the SCAT. Following HT, HSP72 increased in all depots with the greatest induction occurring in the SCAT. In addition, HSP25 increased in the rpWAT and eWAT, while HSP60 increased in the rpWAT only in vivo. Free fatty acid (FFA) release from WAT explants was increased following HT in the rpWAT only, and fatty acid reesterification was decreased in the rpWAT but increased in the SCAT following HT. HT increased insulin responsiveness in eWAT, but not in SCAT or rpWAT. Differences in HSP expression and induction patterns following HT further support the growing body of literature differentiating distinct WAT depots in health and disease.
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2015
Melissa A. Allwood; Andrew J. Foster; Alicia M. Arkell; Marie-Soleil Beaudoin; Laelie A. Snook; Nadya Romanova; Coral L. Murrant; Graham P. Holloway; David C. Wright; Jeremy A. Simpson
The obesity epidemic is considered one of the most serious public health problems of the modern world. Physical therapy is the most accessible form of treatment; however, compliance is a major obstacle due to exercise intolerance and dyspnea. Respiratory muscle atrophy is a cause of dyspnea, yet little is known of obesity-induced respiratory muscle dysfunction. Our objective was to investigate whether obesity-induced skeletal muscle wasting occurs in the diaphragm, the main skeletal muscle involved in inspiration, using the Zucker diabetic fatty (ZDF) rat. After 14 wk, ZDF rats developed obesity, hyperglycemia, and insulin resistance, compared with lean controls. Hemodynamic analysis revealed ZDF rats have impaired cardiac relaxation (P = 0.001) with elevated end-diastolic pressure (P = 0.006), indicative of diastolic dysfunction. Assessment of diaphragm function revealed weakness (P = 0.0296) in the absence of intrinsic muscle impairment in ZDF rats. Diaphragm morphology revealed increased fibrosis (P < 0.0001), atrophy (P < 0.0001), and reduced myosin heavy-chain content (P < 0.001), compared with lean controls. These changes are accompanied by activation of the myostatin signaling pathway with increased serum myostatin (P = 0.017), increased gene expression (P = 0.030) in the diaphragm and retroperitoneal adipose (P = 0.033), and increased SMAD2 phosphorylation in the diaphragm (P = 0.048). Here, we have confirmed the presence of respiratory muscle atrophy and weakness in an obese, diabetic model. We have also identified a pathological role for myostatin signaling in obesity, with systemic contributions from the adipose tissue, a nonskeletal muscle source. These findings have significant implications for future treatment strategies of exercise intolerance in an obese, diabetic population.