Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Soleil Gauthier is active.

Publication


Featured researches published by Marie-Soleil Gauthier.


Journal of Biological Chemistry | 2008

AMP-activated Protein Kinase Is Activated as a Consequence of Lipolysis in the Adipocyte: POTENTIAL MECHANISM AND PHYSIOLOGICAL RELEVANCE*

Marie-Soleil Gauthier; Hideaki Miyoshi; Sandra C. Souza; José M. Cacicedo; Asish K. Saha; Andrew S. Greenberg; Neil B. Ruderman

AMP-activated protein kinase (AMPK) is activated in adipocytes during exercise and other states in which lipolysis is stimulated. However, the mechanism(s) responsible for this effect and its physiological relevance are unclear. To examine these questions, 3T3-L1 adipocytes were treated with cAMP-inducing agents (isoproterenol, forskolin, and isobutylmethylxanthine), which stimulate lipolysis and activate AMPK. When lipolysis was partially inhibited with the general lipase inhibitor orlistat, AMPK activation by these agents was also partially reduced, but the increases in cAMP levels and cAMP-dependent protein kinase (PKA) activity were unaffected. Likewise, small hairpin RNA-mediated silencing of adipose tissue triglyceride lipase inhibited both forskolin-stimulated lipolysis and AMPK activation but not that of PKA. Forskolin treatment increased the AMP:ATP ratio, and this too was reduced by orlistat. When acyl-CoA synthetase, which catalyzes the conversion of fatty acids to fatty acyl-CoA, was inhibited with triacsin C, the increases in both AMPK activity and AMP:ATP ratio were blunted. Isoproterenol-stimulated lipolysis was accompanied by an increase in oxidative stress, an effect that was quintupled in cells incubated with the AMPK inhibitor compound C. The isoproterenol-induced increase in the AMP:ATP ratio was also much greater in these cells. In conclusion, the results indicate that activation of AMPK in adipocytes by cAMP-inducing agents is a consequence of lipolysis and not of PKA activation. They suggest that AMPK activation in this setting is caused by an increase in the AMP:ATP ratio that appears to be due, at least in part, to the acylation of fatty acids. Finally, this AMPK activation appears to restrain the energy depletion and oxidative stress caused by lipolysis.


Biochemical and Biophysical Research Communications | 2009

Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells

Gabriela Suchankova; Lauren Nelson; Zachary Gerhart-Hines; Meghan Kelly; Marie-Soleil Gauthier; Asish K. Saha; Yasuo Ido; Pere Puigserver; Neil B. Ruderman

We examined in HepG2 cells whether glucose-induced changes in AMP-activated protein kinase (AMPK) activity could be mediated by SIRT1, an NAD(+)-dependent histone/protein deacetylase that has been linked to the increase in longevity caused by caloric restriction. Incubation with 25 vs. 5mM glucose for 6h concurrently diminished the phosphorylation of AMPK (Thr 172) and ACC (Ser 79), increased lactate release, and decreased the abundance and activity of SIRT1. In contrast, incubation with pyruvate (0.1 and 1mM) for 2h increased AMPK phosphorylation and SIRT1 abundance and activity. The putative SIRT1 activators resveratrol and quercetin also increased AMPK phosphorylation. None of the tested compounds (low or high glucose, pyruvate, and resveratrol) significantly altered the AMP/ATP ratio. Collectively, these findings raise the possibility that glucose-induced changes in AMPK are linked to alterations in SIRT1 abundance and activity and possibly cellular redox state.


Biochemical and Biophysical Research Communications | 2011

Decreased AMP-activated protein kinase activity is associated with increased inflammation in visceral adipose tissue and with whole-body insulin resistance in morbidly obese humans.

Marie-Soleil Gauthier; Elena L O’Brien; Sherman J. Bigornia; Melanie Mott; José M. Cacicedo; X. Julia Xu; Noyan Gokce; Caroline M. Apovian; Neil B. Ruderman

Inflammation and infiltration of immune cells in white adipose tissue have been implicated in the development of obesity-associated insulin resistance. Likewise, dysregulation of the fuel-sensing enzyme AMP-activated protein kinase (AMPK) has been proposed as a pathogenetic factor for these abnormalities based on both its links to insulin action and its anti-inflammatory effects. In this study, we examined the relationships between AMPK activity, the expression of multiple inflammatory markers in visceral (mesenteric and omental) and abdominal subcutaneous adipose tissue, and whole-body insulin sensitivity in morbidly obese patients (BMI 48±1.9 kg/m(2)) undergoing gastric bypass surgery. AMPK activity was assessed by Western-blots (P-AMPK/T-AMPK) and mRNA levels of various markers of inflammation by qRT-PCR. Patients were stratified as insulin sensitive obese or insulin-resistant obese according to their HOMA-IR values. The results indicate that AMPK activity is lower in visceral than in subcutaneous abdominal adipose tissue of these patients and that this is associated with an increased expression of multiple inflammatory genes. They also revealed that AMPK activity is lower in adipose tissue of obese patients who are insulin resistant (HOMA-IR>2.3) than in BMI-matched insulin sensitive subjects. Furthermore, this difference was evident in all three fat depots. In conclusion, the data suggest that there are close links between reduced AMPK activity and inflammation in white adipose tissue, and whole-body insulin resistance in obese humans. Whether adipose tissue AMPK dysregulation is a causal factor for the development of the inflammation and insulin resistance remains to be determined.


Journal of Lipid Research | 2012

Insulin sensitive and resistant obesity in humans: AMPK activity, oxidative stress, and depot-specific changes in gene expression in adipose tissue

X. Julia Xu; Marie-Soleil Gauthier; Donald T. Hess; Caroline M. Apovian; José M. Cacicedo; Noyan Gokce; Melissa G. Farb; Rudy J. Valentine; Neil B. Ruderman

We previously reported that adenosine monophosphate-activated protein kinase (AMPK) activity is lower in adipose tissue of morbidly obese individuals who are insulin resistant than in comparably obese people who are insulin sensitive. However, the number of patients and parameters studied were small. Here, we compared abdominal subcutaneous, epiploic, and omental fat from 16 morbidly obese individuals classified as insulin sensitive or insulin resistant based on the homeostatic model assessment of insulin resistance. We confirmed that AMPK activity is diminished in the insulin resistant group. A custom PCR array revealed increases in mRNA levels of a wide variety of genes associated with inflammation and decreases in PGC-1α and Nampt in omental fat of the insulin resistant group. In contrast, subcutaneous abdominal fat of the same patients showed increases in PTP-1b, VEGFa, IFNγ, PAI-1, and NOS-2 not observed in omental fat. Only angiotensinogen and CD4+ mRNA levels were increased in both depots. Surprisingly, TNFα was only increased in epiploic fat, which otherwise showed very few changes. Protein carbonyl levels, a measure of oxidative stress, were increased in all depots. Thus, adipose tissues of markedly obese insulin resistant individuals uniformly show decreased AMPK activity and increased oxidative stress compared with insulin sensitive patients. However, most changes in gene expression appear to be depot-specific.


Diabetes | 2009

Activation of AMP-Activated Protein Kinase by Interleukin-6 in Rat Skeletal Muscle: Association With Changes in cAMP, Energy State, and Endogenous Fuel Mobilization

Meghan Kelly; Marie-Soleil Gauthier; Asish K. Saha; Neil B. Ruderman

OBJECTIVE Interleukin-6 (IL-6) directly activates AMP-activated protein kinase (AMPK) in vivo and in vitro; however, the mechanism by which it does so is unknown. RESEARCH DESIGN AND METHODS We examined this question in skeletal muscle using an incubated rat extensor digitorum longus (EDL) muscle preparation as a tool. RESULTS AMPK activation by IL-6 coincided temporally with a nearly threefold increase in the AMP:ATP ratio in the EDL. The effects of IL-6 on both AMPK activity and energy state were inhibited by coincubation with propranolol, suggesting involvement of β-adrenergic signaling. In keeping with this notion, IL-6 concurrently induced a transient increase in cAMP, and its ability to activate AMPK was blocked by the adenyl cyclase inhibitor 2′5′-dideoxyadenosine. In addition, like other β-adrenergic stimuli, IL-6 increased glycogen breakdown and lipolysis in the EDL. Similar effects of IL-6 on AMPK, energy state, and cAMP content were observed in C2C12 myotubes and gastrocnemius muscle in vivo, indicating that they were not unique to the incubated EDL. CONCLUSIONS These studies demonstrate that IL-6 activates AMPK in skeletal muscle by increasing the concentration of cAMP and, secondarily, the AMP:ATP ratio. They also suggest that substantial increases in IL-6 concentrations, such as those that can result from its synthesis by muscles during exercise, may play a role in the mobilization of fuel stores within skeletal muscle as an added means of restoring energy balance.


British Journal of Nutrition | 2006

Time course of the development of non-alcoholic hepatic steatosis in response to high-fat diet-induced obesity in rats.

Marie-Soleil Gauthier; Roland Favier; Jean-Marc Lavoie

The aim of the study was to characterize the time course of the development of high-fat diet-induced hepatic steatosis and its relation to body fat accretion and changes in plasma lipid profile. Female Sprague-Dawley rats were high-fat fed (HF; 42 %, kJ) for 1, 2, 4, 6, 12 and 16 weeks and compared to standard fed rats (SD). Data obtained from HF rats were further analysed by classifying the animals into obesity-prone and obesity-resistant. In HF rats, liver lipid content increased rapidly by approximately 200 % during the first 2 weeks, decreased almost to baseline levels between weeks 2 and 6, and re-increased by 17 % between weeks 6 and 16 (P<0.05). Body weight, body fat accretion, plasma leptin, NEFA and glycerol concentrations were higher in HF than in SD rats (P<0.05). These higher values were established in 2 weeks and the differences between the groups did not further enlarge from weeks 2 to 16. Obesity-prone rats depicted higher body weight and body fat accretion than obesity-resistant and SD rats. Surprisingly, however, liver lipid content was the same in obesity-prone as in obesity-resistant rats as they were both higher than in SD rats (weeks 2 and 16; P<0.05). Our data support the hypothesis that the liver acts as a systemic buffer, largely increasing its lipid content in the early stage of high-fat feeding. Our results also suggest that the development of non-alcoholic hepatic steatosis is more linked to dietary fat ingestion than to body weight gain.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Acute exercise activates AMPK and eNOS in the mouse aorta

José M. Cacicedo; Marie-Soleil Gauthier; Nathan K. LeBrasseur; Ravi Jasuja; Neil B. Ruderman; Yasuo Ido

Exercise can prevent endothelial cell (EC) dysfunction and atherosclerosis even in the absence of improvements in plasma lipids. However, the mechanisms responsible for these effects are incompletely understood. In this study we examined in mice whether an acute bout of exercise activates enzymes that could prevent EC dysfunction, such as AMP-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). We also examined whether exercise alters known regulators of these enzymes. C57BL/6 mice underwent a single bout of exhaustive treadmill exercise after which their aortas were analyzed for activation of AMPK, AMPK regulatory proteins, eNOS, and various enzymes that, like AMPK, activate eNOS. We found that such exercise acutely activates both AMPK and eNOS in the whole aorta and that the magnitude of these effects correlated with both the distance run and activation of the AMPK regulatory proteins silent information regulator-1 (SIRT1)-LKB1 and CaMKKβ. In contrast, Akt, PKA, PKG, and Src, other kinases known to activate eNOS, were unaffected. Immunohistochemical analysis revealed that AMPK and eNOS were both activated in the ECs of the aorta. This study provides the first evidence that an acute bout of exercise activates AMPK and eNOS in the endothelium of the aorta. The results also suggest that AMPK likely is the principal activator of eNOS in this setting and that its own activation may be mediated by both SIRT1-LKB1 and CaMKKβ.


The FASEB Journal | 2010

Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio

Qingqing Liu; Marie-Soleil Gauthier; Lei Sun; Neil B. Ruderman; Harvey F. Lodish

Adiponectin activates AMP‐activated protein kinase (AMPK) in adipocytes, but the underlying mechanism remains unclear. Here we tested the hypothesis that AMP, generated in activating fatty acids to their CoA derivatives, catalyzed by acyl‐CoA synthetases, is involved in AMPK activation by adiponectin. Moreover, in adipocytes, insulin affects the subcellular localization of acyl‐CoA synthetase FATP1. Thus, we also tested whether insulin activates AMPK in these cells and, if so, whether it activates through a similar mechanism. We examined these hypotheses by measuring the AMP/ATP ratio and AMPK activation on adiponectin and insulin stimulation and after knocking down acyl‐CoA synthetases in adipocytes. We show that adiponectin activation of AMPK is accompanied by an ∼2‐fold increase in the cellular AMP/ATP ratio. Moreover, FATP1 and Acsll, the 2 major acyl‐CoA synthetase isoforms in adipocytes, are essential for AMPK activation by adiponectin. We also show that after 40 min. insulin activated AMPK in adipocytes, which was coupled with a 5‐fold increase in the cellular AMP/ATP ratio. Knockdown studies show that FATP1 and Acsl1 are required for these processes, as well as for stimulation of long‐chain fatty acid uptake by adiponection and insulin. These studies demonstrate that a change in cellular energy state is associated with AMPK activation by both adiponectin and insulin, which requires the activity of FATP1 and Acsll.—Liu, Q., Gauthier, M.‐L., Sun, L., Ruderman, N., Lodish, H. Activation of AMP‐activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl‐CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio. FASEB J. 24, 4229–4239 (2010). www.fasebj.org


American Journal of Physiology-cell Physiology | 2012

A novel inverse relationship between metformin-triggered AMPK-SIRT1 signaling and p53 protein abundance in high glucose-exposed HepG2 cells

Lauren Nelson; Rudy J. Valentine; José M. Cacicedo; Marie-Soleil Gauthier; Yasuo Ido; Neil B. Ruderman

AMP-activated protein kinase (AMPK) and the NAD(+)-dependent histone/protein deacetylase sirtuin 1 (SIRT1) are metabolic sensors that can increase each others activity. They are also both activated by the antidiabetic drug metformin and downregulated in the liver under conditions of nutrient excess (e.g., hyperglycemia, high-fat diet, obesity). In these situations, the abundance of the tumor suppressor p53 is increased; however, the relevance of this to the changes in AMPK and SIRT1 is not known. In the present study we investigated this question in HepG2 cells under high glucose conditions. Metformin induced activation of AMPK and SIRT1 and decreased p53 protein abundance. It also decreased triglyceride accumulation and cytosolic oxidative stress (a trigger for p53 accumulation) and increased the deacetylation of p53 at a SIRT1-targeted site. The decrease in p53 abundance caused by metformin was abolished by inhibition of murine double minute 2 (MDM2), a ubiquitin ligase that mediates p53 degradation, as well as by overexpression of a dominant-negative AMPK or a shRNA-mediated knockdown of SIRT1. In addition, overexpression of p53 decreased SIRT1 gene expression and protein abundance, as well as AMPK activity in metformin-treated cells. It also diminished the triglyceride-lowering action of metformin, an effect that was rescued by incubation with the SIRT1 activator SRT2183. Collectively, these findings suggest the existence of a novel reciprocal interaction between AMPK/SIRT1 and p53 that may have implications for the pathogenesis and treatment of metabolic diseases.


The Journal of Clinical Endocrinology and Metabolism | 2014

The Metabolically Healthy But Obese Phenotype Is Associated With Lower Plasma Levels of Persistent Organic Pollutants as Compared to the Metabolically Abnormal Obese Phenotype

Marie-Soleil Gauthier; Rémi Rabasa-Lhoret; Denis Prud'homme; Antony D. Karelis; Dawei Geng; Bert van Bavel; Jérôme Ruzzin

CONTEXT Although obesity is strongly linked to insulin resistance and type 2 diabetes, a subset of obese individuals termed metabolically healthy but obese (MHO) appears relatively protected from the development of cardiometabolic complications. The origins of this metabolically healthy phenotype remain unclear. Recently, persistent organic pollutants (POPs) have emerged as potential endocrine disruptors. OBJECTIVE The aim of this study was to test the hypothesis that the MHO phenotype presents lower circulating levels of POPs as compared to the metabolically abnormal obese (MAO) phenotype. DESIGN, SETTING, AND PATIENTS We conducted a cross-sectional study of 76 nondiabetic obese (body mass index ≥30 kg/m(2)) postmenopausal women. MAIN OUTCOME MEASURES Plasma concentrations of 21 POPs as well as cardiometabolic risk factors were analyzed. RESULTS For similar age, body mass index, and fat mass index, MHO women (n = 40) showed higher insulin sensitivity levels and a more favorable cardiometabolic profile than MAO women (n = 36), as evidenced by a 2-fold increase in glucose disposal rates measured by the hyperinsulinemic-euglycemic clamp (P = .001). Among 18 detectable pollutants measured, MAO women had higher plasma concentrations of 12 POPs (fold increase, 1.4-2.9; P < .001-.036). Logistic regression analyses showed that the prevalence of the MAO phenotype was significantly associated with higher levels of total dioxin- and non-dioxin-like polychlorinated biphenyls (odds ratio, 4.7; 95% confidence interval, 1.8-12.5; P = .002), as well as trans-nonachlor (odds ratio, 6.1; 95% CI, 2.2-16.4; P < .001). CONCLUSION Our study demonstrates that the metabolically healthy and abnormal phenotypes have distinct plasma POP profiles.

Collaboration


Dive into the Marie-Soleil Gauthier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adèle Coriati

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge