Marie T. Dittmann
University of Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie T. Dittmann.
Proceedings of the Royal Society of London B: Biological Sciences | 2014
Moritz Muschick; Patrik Nosil; Marius Roesti; Marie T. Dittmann; Luke J. Harmon; Walter Salzburger
Adaptive radiation (AR) is a key process in the origin of organismal diversity. However, the evolution of trait disparity in connection with ecological specialization is still poorly understood. Available models for vertebrate ARs predict that diversification occurs in the form of temporal stages driven by different selective forces. Here, we investigate the AR of cichlid fishes in East African Lake Tanganyika and use macroevolutionary model fitting to evaluate whether diversification happened in temporal stages. Six trait complexes, for which we also provide evidence of their adaptiveness, are analysed with comparative methods: body shape, pharyngeal jaw shape, gill raker traits, gut length, brain weight and body coloration. Overall, we do not find strong evidence for the ‘stages model’ of AR. However, our results suggest that trophic traits diversify earlier than traits implicated in macrohabitat adaptation and that sexual communication traits (i.e. coloration) diversify late in the radiation.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2015
Marie T. Dittmann; Jürgen Hummel; Sven Hammer; Abdi Arif; Christiana Hebel; Dennis W. H. Müller; Julia Fritz; Patrick Steuer; Angela Schwarm; Michael Kreuzer; Marcus Clauss
Digesta flow plays an important role in ruminant digestive physiology. We measured the mean retention time (MRT) of a solute and a particle marker in the gastrointestinal tract (GIT) and the reticulorumen (RR) of five gazelles and one dikdik species. Species-specific differences were independent from body mass (BM) or food intake. Comparative evaluations (including up to 31 other ruminant species) indicate that MRT GIT relate positively to BM, and are less related to feeding type (the percentage of grass in the natural diet, %grass) than MRT RR. The MRTparticleRR is related to BM and (as a trend) %grass, matching a higher RR capacity with increasing BM in grazers compared to browsers. MRTsoluteRR is neither linked to BM nor to %grass but shows a consistent phylogenetic signal. Selectivity factors (SF; MRTparticle/MRTsolute, proxies for the degree of digesta washing) are positively related to %grass, with a threshold effect, where species with >20% grass have higher SF. These findings suggest that in different ruminant taxa, morphophysiological adaptations controlling MRTsoluteRR evolved to achieve a similar SF RR in relation to a %grass threshold. A high SF could facilitate an increased microbial yield from the forestomach. Reasons for variation in SF above the %grass threshold might represent important drivers of ruminant diversification and await closer investigation.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012
Julia Fritz; Sven Hammer; Christiana Hebel; Abdi Arif; Bernhard Michalke; Marie T. Dittmann; Dennis W. H. Müller; Marcus Clauss
Ostriches (Struthio camelus) achieve digesta retention times, digesta particle size reduction and digestibilities equal to similar-sized herbivorous mammals, in contrast to some other avian herbivores. The sequence of digestive processes in their gastrointestinal tract, however, is still unexplored. Using two groups of four ostriches (mean body mass 75.1 ± 17.3 kg) kept on fresh alfalfa, we tested the effect of two intake levels (17 and 42 g dry matter kg(-0.75)d(-1)) on the mean retention time (MRT) of a solute and three different-sized (2, 10, 20 mm) particle markers, mean faecal particle size (MPS), and digestibility. Intake level did not affect MRT, but MPS (0.74 vs. 1.52 mm) and dry matter digestibility (81 vs. 78%). The solute marker (MRT 22-26 h) was excreted faster than the particle markers; there was no difference in the MRT of 10 and 20 mm particles (MRT 28-32 h), but 2mm particles were retained longer (MRT 39-40 h). Because the solute marker was not selectively retained, and wet-sieving of gut contents of slaughtered animals did not indicate smaller particles in the caeca, the long MRT of small particles is interpreted as intermittent excretion from the gizzard, potentially due to entrapment in small grit. The marker excretion pattern also showed intermittent peaks for all markers in five of the animals, which indicates non-continuous outflow from the gizzard. When adding our data to literature data on avian herbivores, a dichotomy is evident, with ostrich and hoatzin (Opisthocomus hoazin) displaying long MRTs, high digestibilities, and gut capacities similar to mammalian herbivores, and other avian herbivores such as grouse, geese or emus with shorter MRTs, lower fibre digestibilities and lower gut capacities. In the available data for all avian herbivores where food intake and MRTs were measured, this dichotomy and food intake level, but not body mass, was related to MRT, adding to the evidence that body mass itself may not be sole major determinant of digestive physiology. The most striking difference between mammalian and avian herbivores from the literature is the fundamentally lower methane production measured in the very few studies in birds including ostriches, which appears to be at the level of reptiles, in spite of general food intake levels of a magnitude as in mammals. Further studies in ostriches and other avian herbivores are required to understand the differences in digestive mechanisms between avian and mammalian herbivores.
British Journal of Nutrition | 2016
Marie T. Dittmann; K.J. Hammond; P. Kirton; D.J. Humphries; L.A. Crompton; Sylvia Ortmann; T.H. Misselbrook; Karl-Heinz Südekum; Angela Schwarm; Michael Kreuzer; C.K. Reynolds; Marcus Clauss
Enteric methane (CH4) production is a side-effect of herbivore digestion, but it is unknown whether CH4 itself influences digestive physiology. We investigated the effect of adding CH4 to, or reducing it in, the reticulorumen (RR) in a 4×4 Latin square experiment with rumen-fistulated, non-lactating cows, with four treatments: (i) control, (ii) insufflation of CH4 (iCH4), (iii) N via rumen fistula, (iv) reduction of CH4 via administration of bromochloromethane (BCM). DM intake (DMI), apparent total tract digestibility, digesta mean retention times (MRT), rumen motility and chewing activity, spot breath CH4 emission (CH4exhal, litre/kg DMI) as well as CH4 dissolved in rumen fluid (CH4RRf, µg/ml) were measured. Data were analysed using mixed models, including treatment (or, alternatively, CH4exhal or CH4RRf) and DMI relative to body mass0·85 (rDMI) as covariates. rDMI was the lowest on the BCM treatment. CH4exhal was highest for iCH4 and lowest for BCM treatments, whereas only BCM affected (reduced) CH4RRf. After adjusting for rDMI, CH4RRf had a negative association with MRT in the gastrointestinal tract but not in the RR, and negative associations with fibre digestibility and measures of rumination activity. Adjusting for rDMI, CH4exhal had additionally a negative association with particle MRT in the RR and a positive association with rumen motility. Thus, higher rumen levels of CH4 (CH4exhal or CH4RRf) were associated with shorter MRT and increased motility. These findings are tentatively interpreted as a feedback mechanism in the ruminant digestive tract that aims at mitigating CH4 losses by shortening MRT at higher CH4.
Hydrobiologia | 2012
Marie T. Dittmann; Marius Roesti; Adrian Indermaur; Marco Colombo; Martin Gschwind; Isabel S. Keller; Robin Kovac; Marta Barluenga; Moritz Muschick; Walter Salzburger
The Midas Cichlid species complex (Amphilophus spp.) in Central America serves as a prominent model system to study sympatric speciation and parallel adaptive radiation, since small arrays of equivalent ecotype morphs have evolved independently in different crater lakes. While the taxonomy and evolutionary history of the different species are well resolved, little is known about basic ecological parameters of Midas Cichlid assemblages. Here, we use a line transect survey to investigate the depth-dependent abundance of Amphilophus spp. along the shores of two Nicaraguan crater lakes, Apoyo and Xiloá. We find a considerable higher density of Midas cichlids in Lake Xiloá as compared to Lake Apoyo, especially at the shallowest depth level. This might be due to the higher eutrophication level of Lake Xiloá and associated differences in food availability, and/or the presence of a greater diversity of niches in that lake. In any case, convergent forms evolved despite noticeable differences in size, age, eutrophication level, and carrying capacity. Further, our data provide abundance and density estimates for Midas Cichlid fish, which serve as baseline for future surveys of these ecosystems and are also relevant to past and future modeling of ecological speciation.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2016
Catharina Vendl; Samuel Frei; Marie T. Dittmann; Samuel Furrer; Sylvia Ortmann; Arne Lawrenz; Bastian Lange; Adam J. Munn; Michael Kreuzer; Marcus Clauss
Methane (CH4) production varies between herbivore species, but reasons for this variation remain to be elucidated. Here, we report open-circuit chamber respiration measurements of CH4 production in four specimens each of two non-ruminant mammalian herbivores with a complex forestomach but largely differing in body size, the collared peccary (Pecari tajacu, mean body mass 17kg) and the pygmy hippopotamus (Hexaprotodon liberiensis, 229kg) fed lucerne-based diets. In addition, food intake, digestibility and mean retention times were measured in the same experiments. CH4 production averaged 8 and 72L/d, 18 and 19L/kg dry matter intake, and 4.0 and 4.2% of gross energy intake for the two species, respectively. When compared with previously reported data on CH4 production in other non-ruminant and ruminant foregut-fermenting as well as hindgut-fermenting species, it is evident that neither the question whether a species is a foregut fermenter or not, or whether it ruminates or not, is of the relevance previously suggested to explain variation in CH4 production between species. Rather, differences in CH4 production between species on similar diets appear related to species-specific differences in food intake and digesta retention kinetics.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2015
Samuel Frei; Marie T. Dittmann; Christoph Reutlinger; Sylvia Ortmann; Jean-Michel Hatt; Michael Kreuzer; Marcus Clauss
Ostriches (Struthio camelus) are herbivorous birds with a digestive physiology that shares several similarities with that of herbivorous mammals. Previous reports, however, claimed a very low methane emission from ostriches, which would be clearly different from mammals. If this could be confirmed, ostrich meat would represent a very attractive alternative to ruminant-and generally mammalian-meat by representing a particularly low-emission agricultural form of production. We individually measured, by chamber respirometry, the amount of oxygen consumed as well as carbon dioxide and methane emitted from six adult ostriches (body mass 108.3±8.3 kg) during a 24-hour period when fed a pelleted lucerne diet. While oxygen consumption was in the range of values previously reported for ostriches, supporting the validity of our experimental setup, methane production was, at 17.5±3.2 L d(-1), much higher than previously reported for this species, and was of the magnitude expected for similar-sized, nonruminant mammalian herbivores. These results suggest that methane emission is similar between ostriches and nonruminant mammalian herbivores and that the environmental burden of these animals is comparable. The findings furthermore indicate that it appears justified to use currently available scaling equations for methane production of nonruminant mammals in paleo-reconstructions of methane production of herbivorous dinosaurs.
Journal of Dairy Science | 2017
Anna Thomson; D.J. Humphries; Kirsty E. Kliem; Marie T. Dittmann; C.K. Reynolds
The objective of this study was to investigate whether higher lucerne (Medicago sativa; alfalfa) silage inclusion rate and longer lucerne chop length improves rumen function through increased provision of physically effective fiber, when included in a maize and lucerne silage-based total mixed ration. Diets were formulated to contain a 50:50 forage:concentrate ratio [dry matter (DM) basis] and be isonitrogenous and contain equal levels of neutral detergent fiber (320 g/kg). The forage portion of the offered diets was composed of maize and lucerne silage DM in proportions (wt/wt) of either 25:75 (high lucerne; HL) or 75:25 (low lucerne; LL). Second-cut lucerne was harvested and conserved as silage at either a long (L) or a short (S) chop length (geometric mean particle lengths of 9.0 and 14.3 mm, respectively). These variables were combined in a 2 × 2 factorial arrangement to give 4 treatments (HLL, HLS, LLL, LLS), which were fed in a 4 × 4 Latin square design study to 4 rumen-cannulated, multiparous, Holstein dairy cows in mid lactation. Effects on DM intake, chewing behavior, rumen volatile fatty acid concentration, rumen pH, rumen and fecal particle size, milk production, and milk fatty acid profile were measured. Longer chop length increased rumination times per kilogram of DM intake (+2.8 min/kg) relative to the S chop length, with HLL diets resulting in the most rumination chews. Rumen concentrations of total volatile fatty acids, acetate, and n-valerate were higher for the HLS diet than the other 3 diets, whereas rumen propionate concentration was lowest for the HLL diet. Physically effective fiber (particles >4 mm) percentage in the rumen mat was increased when L chop length was fed regardless of lucerne inclusion rate. No effect of treatment was observed for milk yield, although milk protein concentration was increased by L for the LL diet (+1.6 g/kg) and decreased by L for the HLL diet (-1.4 g/kg). Milk fat concentrations of total cis-18:1 (+3.7 g/100 g of fatty acids) and 18:3 n-3 (+0.2 g/100 g of fatty acids) were greater with HL. In conclusion, longer lucerne silage chop length increased time spent ruminating per kilogram of DM intake, but had no effect on rumen pH in the present study. Increasing dietary lucerne inclusion rate had no effects on rumination activity or rumen pH, but decreased the ratio of n-6:n-3 polyunsaturated fatty acid concentrations in milk fat.
Oikos | 2013
Marcus Clauss; Marie T. Dittmann; Dennis W. H. Müller; Carlo Meloro; Daryl Codron
Mammalian Biology | 2014
Marcus Clauss; Marie T. Dittmann; Dennis W. H. Müller; Philipp Zerbe; Daryl Codron