Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie-Thérèse Nugeyre is active.

Publication


Featured researches published by Marie-Thérèse Nugeyre.


Journal of Immunology | 2006

IL-7 Induces Immunological Improvement in SIV-Infected Rhesus Macaques under Antiviral Therapy

Stéphanie Beq; Marie-Thérèse Nugeyre; Raphaël Ho Tsong Fang; David Gautier; Roger Legrand; Nathalie Schmitt; Jérôme Estaquier; Françoise Barré-Sinoussi; Bruno Hurtrel; Rémi Cheynier; Nicole Israël

Despite efficient antiretroviral therapy (ART), CD4+ T cell counts often remain low in HIV-1-infected patients. This has led to IL-7, a crucial cytokine involved in both thymopoiesis and peripheral T cell homeostasis, being suggested as an additional therapeutic strategy. We investigated whether recombinant simian IL-7-treatment enhanced the T cell renewal initiated by ART in rhesus macaques chronically infected with SIVmac251. Six macaques in the early chronic phase of SIV infection received antiretroviral treatment. Four macaques also received a 3-wk course of IL-7 injections. Viral load was unaffected by IL-7 treatment. IL-7 treatment increased the number of circulating CD4+ and CD8+ memory T cells expressing activation (HLA-DR+, CD25+) and proliferation (Ki-67+) markers. It also increased naive (CD45RAbrightCD62L+) T cell counts by peripheral proliferation and enhanced de novo thymic production. The studied parameters returned to pretreatment values by day 29 after the initiation of treatment, concomitantly to the appearance of anti-IL-7 neutralizing Abs, supporting the need for a nonimmunogenic molecule for human treatment. Thus, IL-7, which increases T cell memory and de novo renewal of naive T cells may have additional benefits in HIV-infected patients receiving ART.


Journal of Clinical Microbiology | 2007

Population-Based Sequencing of the V3 Region of env for Predicting the Coreceptor Usage of Human Immunodeficiency Virus Type 1 Quasispecies

Pierre Delobel; Marie-Thérèse Nugeyre; Michelle Cazabat; Christophe Pasquier; Bruno Marchou; Patrice Massip; Françoise Barré-Sinoussi; Nicole Israël; Jacques Izopet

ABSTRACT Genotypic population-based methods could be faster and less expensive than phenotypic recombinant assays for determining human immunodeficiency virus type 1 (HIV-1) coreceptor usage in patient samples, but their clinical use requires good genotype-phenotype correlation and concordance with clonal analyses. We have assessed these requirements by clonal analysis of the V1 to V3 env PCR products of 26 patients infected with subtype B HIV-1. We used the resulting set of molecular clones, all sequenced and characterized using a single-cycle recombinant virus phenotypic entry assay, to reevaluate genotype-phenotype correlations. Combining the previously described 11/25 and net charge rules for the V3 genotype improved the prediction of HIV-1 coreceptor usage. We also evaluated the concordance of population-based and clonal analyses for predicting the coreceptor usage of HIV-1 quasispecies. Our population-based recombinant phenotypic assay and direct sequencing of V3 were similarly sensitive for detecting the presence of minor species in the virus population, and both correlated well with clonal analysis. The improved genotype-phenotype correlation obtained by combining two simple genotypic rules and the good concordance with clonal analyses suggest that direct sequencing of V3 is a valuable alternative to population-based recombinant phenotypic assays.


Journal of Immunology | 2003

IL-7 stimulates T cell renewal without increasing viral replication in simian immunodeficiency virus-infected macaques

Marie-Thérèse Nugeyre; Valérie Monceaux; Stéphanie Beq; Marie-Christine Cumont; Raphaël Ho Tsong Fang; Laurent Chêne; Michel Morre; Françoise Barré-Sinoussi; Bruno Hurtrel; Nicole Israël

The main failure of antiretroviral therapy is the lack of restoration of HIV-specific CD4+ T cells. IL-7, which has been shown to be a crucial cytokine for thymopoiesis, has been envisaged as an additive therapeutic strategy. However, in vitro studies suggest that IL-7 might sustain HIV replication in thymocytes and T lymphocytes. Therefore, in the present study, we evaluated the effect of IL-7 on both T cell renewal and viral load in SIVmac-infected young macaques in the absence of antiretroviral therapy. This evaluation was conducted during the asymptomatic phase in view of a potential treatment of HIV patients. We show that IL-7 induces both a central renewal and a peripheral expansion of T lymphocytes associated with cell activation. No alarming modulation of the other hemopoietic cells was observed. No increase in the viral load was shown in blood or lymph nodes. These data strengthen the rationale for the use of IL-7 as an efficient immunotherapy in AIDS.


Journal of Virology | 2003

Positive Regulation of CXCR4 Expression and Signaling by Interleukin-7 in CD4+ Mature Thymocytes Correlates with Their Capacity To Favor Human Immunodeficiency X4 Virus Replication

Nathalie Schmitt; Laurent Chêne; David Boutolleau; Marie-Thérèse Nugeyre; Eric Guillemard; Pierre Versmisse; Catherine Jacquemot; Françoise Barré-Sinoussi; Nicole Israël

ABSTRACT The emergence of X4 human immunodeficiency virus type 1 (HIV-1) variants in infected individuals is associated with poor prognosis. One of the possible causes of this emergence might be the selection of X4 variants in some specific tissue compartment. We demonstrate that the thymic microenvironment favors the replication of X4 variants by positively modulating the expression and signaling of CXCR4 in mature CD4+ CD8− CD3+ thymocytes. Here, we show that the interaction of thymic epithelial cells (TEC) with these thymocytes in culture induces an upregulation of CXCR4 expression. The cytokine secreted by TEC, interleukin-7 (IL-7), increases cell surface expression of CXCR4 and efficiently overcomes the downregulation induced by SDF-1α, also produced by TEC. IL-7 also potentiates CXCR4 signaling, leading to actin polymerization, a process necessary for virus entry. In contrast, in intermediate CD4+ CD8− CD3− thymocytes, the other subpopulation known to allow virus replication, TEC or IL-7 has little or no effect on CXCR4 expression and signaling. CCR5 is expressed at similarly low levels in the two thymocyte subpopulations, and neither its expression nor its signaling was modified by the cytokines tested. This positive regulation of CXCR4 by IL-7 in mature CD4+ thymocytes correlates with their high capacity to favor X4 virus replication compared with intermediate thymocytes or peripheral blood mononuclear cells. Indeed, we observed an enrichment of X4 viruses after replication in thymocytes initially infected with a mixture of X4 (NL4-3) and R5 (NLAD8) HIV strains and after the emergence of X4 variants from an R5 primary isolate during culture in mature thymocytes.


Annales De L'institut Pasteur. Virologie | 1984

A new type of retrovirus isolated from patients presenting with lymphadenopathy and acquired immune deficiency syndrome: Structural and antigenic relatedness with equine infectious anaemia virus

Luc Montagnier; Charles Dauguet; C. Axler; Sophie Chamaret; Jacqueline Gruest; Marie-Thérèse Nugeyre; Francoise Rey; Françoise Barré-Sinoussi; Jean-Claude Chermann

Summary Further characterization of a human lymphotropic retrovirus previously isolated from a patient with lymphadenopathy syndrome is reported. The virus is not antigenically related to human T-cell leukaemia virus (HTLV1). The mature virions have a distinct morphology when examined by electron microscopy, with a small eccentric core. This morphology is close to that of equine infectious anaemia virus (EIAV). Moreover, the p25 protein of the human isolate can be immunoprecipitated by sera of horses infected with EIAV. Similar viral isolates have been made from several patients with acquired immune deficiency syndrome (AIDS). Antibodies to such viruses are widely distributed in patients having AIDS or at risk of AIDS.


Journal of Virology | 2006

Naïve T-Cell Depletion Related to Infection by X4 Human Immunodeficiency Virus Type 1 in Poor Immunological Responders to Highly Active Antiretroviral Therapy

Pierre Delobel; Marie-Thérèse Nugeyre; Michelle Cazabat; Karine Sandres-Sauné; Christophe Pasquier; Lise Cuzin; Bruno Marchou; Patrice Massip; Rémi Cheynier; Françoise Barré-Sinoussi; Jacques Izopet; Nicole Israël

ABSTRACT The reasons for poor CD4+ T-cell recovery in some human immunodeficiency virus (HIV)-infected subjects despite effective highly active antiretroviral therapy (HAART) remain unclear. We recently reported that CXCR4-using (X4) HIV-1 could be gradually selected in cellular reservoirs during sustained HAART. Because of the differential expression of HIV-1 coreceptors CCR5 and CXCR4 on distinct T-cell subsets, the residual replication of R5 and X4 viruses could have different impacts on T-cell homeostasis during immune reconstitution on HAART. We examined this hypothesis and the mechanisms of CD4+ T-cell restoration by comparing the virological and immunological features of 15 poor and 15 good immunological responders to HAART. We found a high frequency of X4 viruses in the poor immunological responders. But the levels of intrathymic proliferation of the two groups were similar regardless of whether they were infected by R5 or X4 virus. The frequency of recent thymic emigrants in the poor immunological responders was also similar to that found in the good immunological responders, despite their reduced numbers of naïve CD4+ T cells. Our data, rather, suggest that the naïve T-cell compartment is drained by a high rate of mature naïve cell loss in the periphery due to bystander apoptosis or activation-induced differentiation. X4 viruses could play a role in the depletion of naïve T cells in poor immunological responders to HAART by triggering persistent T-cell activation and bystander apoptosis via gp120-CXCR4 interactions.


PLOS ONE | 2012

Dynamic Shift from CD85j/ILT-2 to NKG2D NK Receptor Expression Pattern on Human Decidual NK during the First Trimester of Pregnancy

Romain Marlin; Marion Duriez; Nadia Berkane; Claire de Truchis; Yoann Madec; Marie-Anne Rey-Cuille; Jean-Saville Cummings; Claude Cannou; Héloïse Quillay; Françoise Barré-Sinoussi; Marie-Thérèse Nugeyre; Elisabeth Menu

During the first trimester of human pregnancy, Natural Killer (NK) cells of the maternal uterine mucosa (e.g. decidua) have a unique phenotype and are involved in crucial physiological processes during pregnancy. We investigated whether modifications of the NK receptor repertoire occur during the first trimester of pregnancy. We found significantly decreased expression of KIR2DL1/S1 and KIR2DL2/L3/S2 receptors, NKp30 and NKp44 activatory receptors, and the CD85j (ILT-2) inhibitory receptor. We also observed significantly increased expression of the NKG2D activatory receptor at the decidual NK cell surface. By flow cytometry, we further highlighted an evolution of NK subsets between 8 and 12 weeks of gestation, with a shift from the KIR2DL1/S1+/KIR2DL2/L3/S2+ subset towards the double negative subset, coupled with a decrease of the CD85j+/NKG2D− subset in favour of the CD85j−/NKG2D+ subset. Furthermore, cell surface expression of NK receptor ligands, including CD85j and NKG2D ligands, has been characterized by flow cytometry on decidual immune CD14+ and CD3+ cells. HLA-G, the high affinity ligand of CD85j, was detected on both cell types. In contrast, NKG2D ligands ULBP-2 ULBP-3 and MICA/B were not expressed on CD14+ and CD3+ cells, however a variable expression of ULBP-1 was observed. The ligand expression of KIR2DL1/S1 and KIR2DL2/L3/S2 was also analyzed: the HLA-C molecule was expressed at a low level on some CD14+ cells whereas it was not detected on CD3+ cell surface. NK receptor ligands are known to be also expressed on the invading placental trophoblast cells. Thus, the phenotypic evolutions of decidual NK cells described in this present study may preserve their activation/inhibition balance during the first trimester of pregnancy.


AIDS | 2006

Differential susceptibility of human thymic dendritic cell subsets to X4 and R5 HIV-1 infection

Nathalie Schmitt; Marie-Thérèse Nugeyre; Daniel Scott-Algara; Marie-Christine Cumont; Françoise Barré-Sinoussi; Gianfranco Pancino; Nicole Israël

Objectives:Human thymus can be infected by HIV-1 with potential consequences on immune regeneration and homeostasis. We previously showed that CD4 thymocytes preferentially replicate CXCR4 tropic (X4) HIV-1 dependently on interleukin (IL)-7. Here we addressed the susceptibility of thymic dendritic cells (DC) to HIV-1 infection. Methods:We investigated the replication ability of CXCR4 or CCR5 (R5) tropic HIV-1 in thymic micro-explants as well as in isolated thymic CD11clowCD14− DC, CD11chighCD14+ DC and plasmacytoid DC subsets. Results:Thymic tissue was productively infected by both X4 and R5 viruses. However, X4 but not R5 HIV-1 replication was enhanced by IL-7 in thymic micro-explants, suggesting that R5 virus replication occurred in cells other than thymocytes. Indeed, we found that R5 HIV-1 replicated efficiently in DC isolated from thymic tissue. The replicative capacity of X4 and R5 viruses differed according to the different DC subsets. R5 but not X4 HIV-1 efficiently replicated in CD11chighCD14+ DC. In contrast, no HIV-1 replication was detected in CD11clowCD14− DC. Both X4 and R5 viruses efficiently replicated in plasmacytoid DC, which secreted interferon-α upon HIV-1 exposure. Productive HIV-1 infection also caused DC loss, consistent with different permissivity of each DC subset. Conclusions:Thymic DC sustain high levels of HIV-1 replication. DC might thus be the first target for R5 HIV-1 infection of thymus, acting as a Trojan horse for HIV-1 spread to thymocytes. Furthermore, DC death induced by HIV-1 infection may affect thymopoiesis.


Retrovirology | 2011

Decidual soluble factors participate in the control of HIV-1 infection at the maternofetal interface

Romain Marlin; Marie-Thérèse Nugeyre; Marion Duriez; Claude Cannou; Anne Le Breton; Nadia Berkane; Françoise Barré-Sinoussi; Elisabeth Menu

BackgroundMaternofetal transmission (MFT) of HIV-1 is relatively rare during the first trimester of pregnancy despite the permissivity of placental cells for cell-to-cell HIV-1 infection. Invasive placental cells interact directly with decidual cells of the uterine mucosa during the first months of pregnancy, but the role of the decidua in the control of HIV-1 transmission is unknown.ResultsWe found that decidual mononuclear cells naturally produce low levels of IL-10, IL-12, IL-15, TNF-α, IFN-α, IFN-γ and CXCL-12 (SDF-1), and large amounts of CCL-2 (MCP1), CCL-3 (MIP-1α), CCL-4 (MIP-1β), CCL-5 (Rantes), CXCL-10 (IP-10), IL-6 and IL-8. CCL-3 and CCL-4 levels were significantly upregulated by in vitro infection with R5 HIV-1 but not X4. Decidual CD14+ antigen presenting cells were the main CCL-3 and CCL-4 producers among decidual leukocytes. R5 and X4 HIV-1 infection was inhibited by decidual cell culture supernatants in vitro. Using HIV-1 pseudotypes, we found that inhibition of the HIV-1 entry step was inhibited by decidual soluble factors.ConclusionOur findings show that decidual innate immunity (soluble factors) is involved in the control of HIV-1 infection at the maternofetal interface. The decidua could thus serve as a mucosal model for identifying correlates of protection against HIV-1 infection.


PLOS ONE | 2009

Antigen-Presenting Cells Represent Targets for R5 HIV-1 Infection in the First Trimester Pregnancy Uterine Mucosa

Romain Marlin; Marie-Thérèse Nugeyre; Claire de Truchis; Nadia Berkane; Amélie Gervaise; Françoise Barré-Sinoussi; Elisabeth Menu

Background During the first trimester of pregnancy, HIV-1 mother-to-child transmission is relatively rare despite the permissivity of placental cells to cell-to-cell HIV-1 infection. The placenta interacts directly with maternal uterine cells (decidual cells) but the physiological role of the decidua in the control of HIV-1 transmission and whether decidua could be a source of infected cells is unknown. Methodology/Principal Findings To answer to this question, decidual mononuclear cells were exposed to HIV-1 in vitro. Decidual cells were shown to be more susceptible to infection by an R5 HIV-1, as compared to an X4 HIV-1. Infected cells were identified by flow cytometry analysis. The results showed that CD14+ cells were the main targets of HIV-1 infection in the decidua. These infected CD14+ cells expressed DC-SIGN, CD11b, CD11c, the Fc gamma receptor CD16, CD32 and CD64, classical MHC class-I and class-II and maturation and activation molecules CD83, CD80 and CD86. The permissivity of decidual tissue was also evaluated by histoculture. Decidual tissue was not infected by X4 HIV-1 but was permissive to R5 HIV-1. Different profiles of infection were observed depending on tissue localization. Conclusions/Significance The presence of HIV-1 target cells in the decidua in vitro and the low rate of in utero mother-to-child transmission during the first trimester of pregnancy suggest that a natural control occurs in vivo limiting cell-to-cell infection of the placenta and consequently infection of the fetus.

Collaboration


Dive into the Marie-Thérèse Nugeyre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge