Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marie Togashi is active.

Publication


Featured researches published by Marie Togashi.


PLOS ONE | 2012

Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) γ Activators and Pan-PPAR Partial Agonists

Marcelo V. Liberato; Alessandro S. Nascimento; Steven D. Ayers; Jean Z. Lin; Aleksandra Cvoro; Rodrigo L. Silveira; Leandro Martínez; Paulo C. T. Souza; Daniel M. Saidemberg; Tuo Deng; Angela Angelica Amato; Marie Togashi; Willa A. Hsueh; Kevin J. Phillips; Mario Sergio Palma; Francisco de Assis Rocha Neves; Munir S. Skaf; Paul Webb; Igor Polikarpov

Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products.


Journal of Biological Chemistry | 2005

Discovery of Small Molecule Inhibitors of the Interaction of the Thyroid Hormone Receptor with Transcriptional Coregulators

Leggy A. Arnold; Eva Estébanez-Perpiñá; Marie Togashi; Natalia Jouravel; Anang A. Shelat; Andrea C. McReynolds; Ellena Mar; Phuong Nguyen; John D. Baxter; Robert J. Fletterick; Paul Webb; R. Kiplin Guy

Thyroid hormone (3,5,3′-triiodo-l-thyronine, T3) is an endocrine hormone that exerts homeostatic regulation of basal metabolic rate, heart rate and contractility, fat deposition, and other phenomena (1, 2). T3 binds to the thyroid hormone receptors (TRs) and controls their regulation of transcription of target genes. The binding of TRs to thyroid hormone induces a conformational change in TRs that regulates the composition of the transcriptional regulatory complex. Recruitment of the correct coregulators (CoR) is important for successful gene regulation. In principle, inhibition of the TR-CoR interaction can have a direct influence on gene transcription in the presence of thyroid hormones. Herein we report a high throughput screen for small molecules capable of inhibiting TR coactivator interactions. One class of inhibitors identified in this screen was aromatic β-aminoketones, which exhibited IC50 values of ∼2 μm. These compounds can undergo a deamination, generating unsaturated ketones capable of reacting with nucleophilic amino acids. Several experiments confirm the hypothesis that these inhibitors are covalently bound to TR. Optimization of these compounds produced leads that inhibited the TR-CoR interaction in vitro with potency of ∼0.6 μm and thyroid signaling in cellular systems. These are the first small molecules irreversibly inhibiting the coactivator binding of a nuclear receptor and suppressing its transcriptional activity.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Ligand selectivity by seeking hydrophobicity in thyroid hormone receptor

Sabine Borngraeber; Mary Jane Budny; Grazia Chiellini; Suzana T. Cunha-Lima; Marie Togashi; Paul Webb; John D. Baxter; Thomas S. Scanlan; Robert J. Fletterick

Selective therapeutics for nuclear receptors would revolutionize treatment for endocrine disease. Specific control of nuclear receptor activity is challenging because the internal cavities that bind hormones can be virtually identical. Only one highly selective hormone analog is known for the thyroid receptor, GC-24, an agonist for human thyroid hormone receptor β. The compound differs from natural hormone in benzyl, substituting for an iodine atom in the 3′ position. The benzyl is too large to fit into the enclosed pocket of the receptor. The crystal structure of human thyroid hormone receptor β at 2.8-Å resolution with GC-24 bound explains its agonist activity and unique isoform specificity. The benzyl of GC-24 is accommodated through shifts of 3–4 Å in two helices. These helices are required for binding hormone and positioning the critical helix 12 at the C terminus. Despite these changes, the complex associates with coactivator as tightly as human thyroid hormone receptor bound to thyroid hormone and is fully active. Our data suggest that increased specificity of ligand recognition derives from creating a new hydrophobic cluster with ligand and protein components.


Journal of Biological Chemistry | 2004

Thyroxine-thyroid hormone receptor interactions.

Ben Sandler; Paul Webb; James W. Apriletti; B. Russell Huber; Marie Togashi; Suzana T. Cunha Lima; Sanja Juric; Stefan Nilsson; Richard L. Wagner; Robert J. Fletterick; John D. Baxter

Thyroid hormone (TH) actions are mediated by nuclear receptors (TRs α and β) that bind triiodothyronine (T3, 3,5,3′-triiodo-l-thyronine) with high affinity, and its precursor thyroxine (T4, 3,5,3′,5′-tetraiodo-l-thyronine) with lower affinity. T4 contains a bulky 5′ iodine group absent from T3. Because T3 is buried in the core of the ligand binding domain (LBD), we have predicted that TH analogues with 5′ substituents should fit poorly into the ligand binding pocket and perhaps behave as antagonists. We therefore examined how T4 affects TR activity and conformation. We obtained several lines of evidence (ligand dissociation kinetics, migration on hydrophobic interaction columns, and non-denaturing gels) that TR-T4 complexes adopt a conformation that differs from TR-T3 complexes in solution. Nonetheless, T4 behaves as an agonist in vitro (in effects on coregulator and DNA binding) and in cells, when conversion to T3 does not contribute to agonist activity. We determined x-ray crystal structures of the TRβ LBD in complex with T3 and T4 at 2.5-Å and 3.1-Å resolution. Comparison of the structures reveals that TRβ accommodates T4 through subtle alterations in the loop connecting helices 11 and 12 and amino acid side chains in the pocket, which, together, enlarge a niche that permits helix 12 to pack over the 5′ iodine and complete the coactivator binding surface. While T3 is the major active TH, our results suggest that T4 could activate nuclear TRs at appropriate concentrations. The ability of TR to adapt to the 5′ extension should be considered in TR ligand design.


Journal of Biological Chemistry | 2012

GQ-16, a novel peroxisome proliferator-activated receptor γ (PPARγ) ligand, promotes insulin sensitization without weight gain.

Angélica Amorim Amato; Senapathy Rajagopalan; Jean Z. Lin; Bruno M. Carvalho; Ana Carolina Migliorini Figueira; Jenny Lu; Stephen D. Ayers; Melina Mottin; Rodrigo L. Silveira; Paulo Telles de Souza; Rosa H. Mourão; Mario J.A. Saad; Marie Togashi; Luiz Alberto Simeoni; Dulcineia S.P. Abdalla; Munir S. Skaf; Igor Polikparpov; Maria do Carmo Alves de Lima; Suely Lins Galdino; Richard G. Brennan; John D. Baxter; Ivan da Rocha Pitta; Paul Webb; Kevin J. Phillips; Francisco de Assis Rocha Neves

Background: PPARγ agonists improve insulin sensitivity but also evoke weight gain. Results: GQ-16 is a PPARγ partial agonist that blocks receptor phosphorylation by Cdk5 and improves insulin sensitivity in diabetic mice in the absence of weight gain. Conclusion: The unique binding mode of GQ-16 appears to be responsible for the compounds advantageous pharmacological profile. Significance: Similar compounds could have promise as anti-diabetic therapeutics. The recent discovery that peroxisome proliferator-activated receptor γ (PPARγ) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report the development of a novel thiazolidinedione that retains similar anti-diabetic efficacy as rosiglitazone in mice yet does not elicit weight gain or edema, common side effects associated with full PPARγ activation. Further characterization of this compound shows GQ-16 to be an effective inhibitor of Cdk5-mediated phosphorylation of PPARγ. The structure of GQ-16 bound to PPARγ demonstrates that the compound utilizes a binding mode distinct from other reported PPARγ ligands, although it does share some structural features with other partial agonists, such as MRL-24 and PA-082, that have similarly been reported to dissociate insulin sensitization from weight gain. Hydrogen/deuterium exchange studies reveal that GQ-16 strongly stabilizes the β-sheet region of the receptor, presumably explaining the compounds efficacy in inhibiting Cdk5-mediated phosphorylation of Ser-273. Molecular dynamics simulations suggest that the partial agonist activity of GQ-16 results from the compounds weak ability to stabilize helix 12 in its active conformation. Our results suggest that the emerging model, whereby “ideal” PPARγ-based therapeutics stabilize the β-sheet/Ser-273 region and inhibit Cdk5-mediated phosphorylation while minimally invoking adipogenesis and classical agonism, is indeed a valid framework to develop improved PPARγ modulators that retain antidiabetic actions while minimizing untoward effects.


Journal of Biological Chemistry | 2007

Thyroid Hormone Response Element Organization Dictates the Composition of Active Receptor

Lara Francielle Ribeiro Velasco; Marie Togashi; Paul G. Walfish; Rutineia de Paula Pessanha; Fanny N. Moura; Gustavo B. Barra; Phuong Nguyen; Rachelle Rebong; Chaoshen Yuan; Luiz A. Simeoni; Ralff C. J. Ribeiro; John D. Baxter; Paul Webb; Francisco A.R. Neves

Thyroid hormone (triiodothyronine, T3) is known to activate transcription by binding heterodimers of thyroid hormone receptors (TRs) and retinoid X receptors (RXRs). RXR-TRs bind to T3 response elements (TREs) composed of direct repeats of the sequence AGGTCA spaced by four nucleotides (DR-4). In other TREs, however, the half-sites can be arranged as inverted palindromes and palindromes (Pal). Here we show that TR homodimers and monomers activate transcription from representative TREs with alternate half-site placements. TRβ activates transcription more efficiently than TRα at an inverted palindrome (F2), and this correlates with preferential TRβ homodimer formation at F2 in vitro. Furthermore, reconstruction of TR transcription complexes in yeast indicates that TRβ homodimers are active at F2, whereas RXR-TRs are active at DR-4 and Pal. Finally, analysis of TRβ mutations that block homodimer and/or heterodimer formation reveal TRE-selective requirements for these surfaces in mammalian cells, which suggest that TRβ homodimers are active at F2, RXR-TRs at DR-4, and TR monomers at Pal. TRβ requires higher levels of hormone for activation at F2 than other TREs, and this differential effect is abolished by a dimer surface mutation suggesting that it is related to composition of the TR·TRE complex. We propose that interactions of particular TR oligomers with different elements play unappreciated roles in TRE-selective actions of liganded TRs in vivo.


Science Signaling | 2006

A High-Throughput Screening Method to Identify Small Molecule Inhibitors of Thyroid Hormone Receptor Coactivator Binding

Leggy A. Arnold; Eva Estébanez-Perpiñá; Marie Togashi; Anang A. Shelat; Cory A. Ocasio; Andrea C. McReynolds; Phuong Nguyen; John D. Baxter; Robert J. Fletterick; Paul Webb; R. Kiplin Guy

To provide alternative methods for regulation of gene transcription initiated by the binding of thyroid hormone (T3) to the thyroid receptor (TR), we have developed a high-throughput method for discovering inhibitors of the interaction of TR with its transcriptional coactivators. The screening method is based on fluorescence polarization (FP), one of the most sensitive and robust high-throughput methods for the study of protein-protein interactions. A fluorescently labeled coactivator is excited by polarized light. The emitted polarized light is a function of the molecular properties of the labeled coactivator, especially Brownian molecular rotation, which is very sensitive to changes in the molecular mass of the labeled complex. Dissociation of hormone receptor from fluorescently labeled coactivator peptide in the presence of small molecules can be detected by this competition method, and the assay can be performed in a high-throughput screening format. Hit compounds identified by this method are evaluated by several secondary assay methods, including a dose-response analysis, a semiquantitative glutathione-S-transferase assay, and a hormone displacement assay. Subsequent in vitro transcription assays can detect inhibition of thyroid signaling at low micromolar concentrations of small molecules in the presence of T3.


Molecular and Cellular Endocrinology | 2008

Complex actions of thyroid hormone receptor antagonist NH-3 on gene promoters in different cell lines.

Vanya Shah; Phuong Nguyen; Ngoc Ha Nguyen; Marie Togashi; Thomas S. Scanlan; John D. Baxter; Paul Webb

It is desirable to obtain new antagonists for thyroid hormone receptors (TRs) and other nuclear receptors (NRs). We previously used X-ray structural models of TR ligand binding domains (LBDs) to design compounds, such as NH-3, that impair coactivator binding to activation function 2 (AF-2) and block thyroid hormone (triiodothyronine, T(3)) actions. However, TRs bind DNA and are transcriptionally active without ligand. Thus, NH-3 could modulate TR activity via effects on other coregulator interaction surfaces, such as activation function (AF-1) and corepressor binding sites. Here, we find that NH-3 blocks TR-LBD interactions with coactivators and corepressors and also inhibits activities of AF-1 and AF-2 in transfections. While NH-3 lacks detectable agonist activity at T(3)-activated genes in GC pituitary cells it nevertheless activates spot 14 (S14) in HTC liver cells with the latter effect accompanied by enhanced histone H4 acetylation and coactivator recruitment at the S14 promoter. Surprisingly, T(3) promotes corepressor recruitment to target promoters. NH-3 effects vary; we observe transient recruitment of N-CoR to S14 in GC cells and dismissal and rebinding of N-CoR to the same promoter in HTC cells. We propose that NH-3 will generally behave as an antagonist by blocking AF-1 and AF-2 but that complex effects on coregulator recruitment may result in partial/mixed agonist effects that are independent of blockade of T(3) binding in some contexts. These properties could ultimately be utilized in drug design and development of new selective TR modulators.


PLOS ONE | 2015

Structure-Based Virtual Screening and Discovery of New PPARδ/γ Dual Agonist and PPARδ and γ Agonists

Vinícius G. Maltarollo; Marie Togashi; Alessandro S. Nascimento; Kathia M. Honorio

Peroxisome proliferator-activated receptors (PPARs) are involved in the control of carbohydrate and lipid metabolism and are considered important targets to treat diabetes mellitus and metabolic syndrome. The available PPAR ligands have several side effects leading to health risks justifying the search for new bioactive ligands to activate the PPAR subtypes, in special PPARδ, the less studied PPAR isoform. Here, we used a structure-based virtual screening protocol in order to find out new PPAR ligands. From a lead-like subset of purchasable compounds, we identified 5 compounds with potential PPAR affinity and, from preliminary in vitro assays, 4 of them showed promising biological activity. Therefore, from our in silico and in vitro protocols, new PPAR ligands are potential candidates to treat metabolic diseases.


The Journal of Steroid Biochemistry and Molecular Biology | 2009

Differential effects of TR ligands on hormone dissociation rates: evidence for multiple ligand entry/exit pathways.

Suzana T. Cunha Lima; Ngoc Ha Nguyen; Marie Togashi; James W. Apriletti; Phuong Nguyen; Igor Polikarpov; Thomas S. Scanlan; John D. Baxter; Paul Webb

Some nuclear receptor (NR) ligands promote dissociation of radiolabeled bound hormone from the buried ligand binding cavity (LBC) more rapidly than excess unlabeled hormone itself. This result was interpreted to mean that challenger ligands bind allosteric sites on the LBD to induce hormone dissociation, and recent findings indicate that ligands bind weakly to multiple sites on the LBD surface. Here, we show that a large fraction of thyroid hormone receptor (TR) ligands promote rapid dissociation (T(1/2)<2h) of radiolabeled T(3) vs. T(3) (T(1/2) approximately 5-7h). We cannot discern relationships between this effect and ligand size, activity or affinity for TRbeta. One ligand, GC-24, binds the TR LBC and (weakly) to the TRbeta-LBD surface that mediates dimer/heterodimer interaction, but we cannot link this interaction to rapid T(3) dissociation. Instead, several lines of evidence suggest that the challenger ligand must interact with the buried LBC to promote rapid T(3) release. Since previous molecular dynamics simulations suggest that TR ligands leave the LBC by several routes, we propose that a subset of challenger ligands binds and stabilizes a partially unfolded intermediate state of TR that arises during T(3) release and that this effect enhances hormone dissociation.

Collaboration


Dive into the Marie Togashi's collaboration.

Top Co-Authors

Avatar

Paul Webb

University of Texas at El Paso

View shared research outputs
Top Co-Authors

Avatar

John D. Baxter

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phuong Nguyen

University of California

View shared research outputs
Top Co-Authors

Avatar

Leggy A. Arnold

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin J. Phillips

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Kiplin Guy

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge