Marie Westerlund
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marie Westerlund.
PLOS ONE | 2011
David Ramonet; João Paulo Lima Daher; Brian M. Lin; Klodjan Stafa; Jaekwang Kim; Rebecca Banerjee; Marie Westerlund; Olga Pletnikova; Liliane Glauser; Lichuan Yang; Ying Liu; Deborah A. Swing; M. Flint Beal; Juan C. Troncoso; J. Michael McCaffery; Nancy A. Jenkins; Neal G. Copeland; Dagmar Galter; Bobby Thomas; Michael K. Lee; Ted M. Dawson; Valina L. Dawson; Darren J. Moore
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant familial Parkinsons disease (PD) and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s) through which familial mutations precipitate neuronal degeneration and PD.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Louise Hedskog; Catarina Moreira Pinho; Riccardo Filadi; Annica Rönnbäck; Laura Hertwig; Birgitta Wiehager; Pia Larssen; Sandra Gellhaar; Anna Sandebring; Marie Westerlund; Caroline Graff; Bengt Winblad; Dagmar Galter; Homira Behbahani; Paola Pizzo; Elzbieta Glaser; Maria Ankarcrona
It is well-established that subcompartments of endoplasmic reticulum (ER) are in physical contact with the mitochondria. These lipid raft-like regions of ER are referred to as mitochondria-associated ER membranes (MAMs), and they play an important role in, for example, lipid synthesis, calcium homeostasis, and apoptotic signaling. Perturbation of MAM function has previously been suggested in Alzheimer’s disease (AD) as shown in fibroblasts from AD patients and a neuroblastoma cell line containing familial presenilin-2 AD mutation. The effect of AD pathogenesis on the ER–mitochondria interplay in the brain has so far remained unknown. Here, we studied ER–mitochondria contacts in human AD brain and related AD mouse and neuronal cell models. We found uniform distribution of MAM in neurons. Phosphofurin acidic cluster sorting protein-2 and σ1 receptor, two MAM-associated proteins, were shown to be essential for neuronal survival, because siRNA knockdown resulted in degeneration. Up-regulated MAM-associated proteins were found in the AD brain and amyloid precursor protein (APP)Swe/Lon mouse model, in which up-regulation was observed before the appearance of plaques. By studying an ER–mitochondria bridging complex, inositol-1,4,5-triphosphate receptor–voltage-dependent anion channel, we revealed that nanomolar concentrations of amyloid β-peptide increased inositol-1,4,5-triphosphate receptor and voltage-dependent anion channel protein expression and elevated the number of ER–mitochondria contact points and mitochondrial calcium concentrations. Our data suggest an important role of ER–mitochondria contacts and cross-talk in AD pathology.
Human Mutation | 2013
Julie van der Zee; Ilse Gijselinck; Lubina Dillen; Tim Van Langenhove; Jessie Theuns; Sebastiaan Engelborghs; Stéphanie Philtjens; Mathieu Vandenbulcke; Kristel Sleegers; Anne Sieben; Veerle Bäumer; Githa Maes; Ellen Corsmit; Barbara Borroni; Alessandro Padovani; Silvana Archetti; Robert Perneczky; Janine Diehl-Schmid; Alexandre de Mendonça; Gabriel Miltenberger-Miltenyi; Sónia Pereira; José Pimentel; Benedetta Nacmias; Silvia Bagnoli; Sandro Sorbi; Caroline Graff; Huei-Hsin Chiang; Marie Westerlund; Raquel Sánchez-Valle; Albert Lladó
We assessed the geographical distribution of C9orf72 G4C2 expansions in a pan‐European frontotemporal lobar degeneration (FTLD) cohort (n = 1,205), ascertained by the European Early‐Onset Dementia (EOD) consortium. Next, we performed a meta‐analysis of our data and that of other European studies, together 2,668 patients from 15 Western European countries. The frequency of the C9orf72 expansions in Western Europe was 9.98% in overall FTLD, with 18.52% in familial, and 6.26% in sporadic FTLD patients. Outliers were Finland and Sweden with overall frequencies of respectively 29.33% and 20.73%, but also Spain with 25.49%. In contrast, prevalence in Germany was limited to 4.82%. In addition, we studied the role of intermediate repeats (7–24 repeat units), which are strongly correlated with the risk haplotype, on disease and C9orf72 expression. In vitro reporter gene expression studies demonstrated significantly decreased transcriptional activity of C9orf72 with increasing number of normal repeat units, indicating that intermediate repeats might act as predisposing alleles and in favor of the loss‐of‐function disease mechanism. Further, we observed a significantly increased frequency of short indels in the GC‐rich low complexity sequence adjacent to the G4C2 repeat in C9orf72 expansion carriers (P < 0.001) with the most common indel creating one long contiguous imperfect G4C2 repeat, which is likely more prone to replication slippage and pathological expansion.
Annals of Neurology | 2006
Dagmar Galter; Marie Westerlund; Andrea Carmine; Eva Lindqvist; Olof Sydow; Lars Olson
Leucine‐rich repeat kinase 2 (LRRK2) has been linked to Parkinsons disease. Our study explores the expression of LRRK2 in human and rodent brain tissue.
FEBS Journal | 2008
Andrea Carmine Belin; Marie Westerlund
Parkinson’s disease (PD) is a common neurodegenerative disorder in the aging population, affecting more than 1% over the age of 65 years. Certain rare forms of the disease are monogenic, representing 5–10% of PD patients, but there is increasing evidence that multiple genetic risk factors are important also for common forms of PD. To date, 13 genetic loci, PARK1‐13, have been suggested for rare forms of PD such as autosomal dominant and autosomal recessive PD. At six of these loci, genes have been identified and reported by several groups to carry mutations that are linked to affected family members. Genes in which mutations have been linked to familial PD have also been shown to be candidate genes for idiopathic forms of PD, as those same genes may also carry other mutations that merely increase the risk. Four of the PARK genes, SNCA at PARK1, UCH‐L1 at PARK5, PINK1 at PARK6 and LRRK2 at PARK8, have been implicated in sporadic PD. There are indeed multiple genetic risk factors that combine in different ways to increase or decrease risk, and several of these need to be identified in order to begin unwinding the causative pathways leading to the different forms of PD. In this review, we present the molecular genetics of PD that are understood today, to help explain the pathways leading to neurodegeneration.
Neuroscience | 2008
Marie Westerlund; Andrea Carmine Belin; Anna Anvret; Paula C. Bickford; Lars Olson; Dagmar Galter
Mutations in leucine-rich repeat kinase 2 (LRRK2) constitute the most common known cause of Parkinsons disease (PD), accounting for both familial and sporadic forms of the disease. We analyzed the tempo-spatial activity of leucine-rich repeat kinase 1 (LRRK1) and LRRK2 at the cellular level in human and rat tissues including development and aging. Lrrk2 mRNA is expressed in adult rat striatum, hippocampus, cerebral cortex, sensory and sympathetic ganglia, lung, spleen and kidney. In the developing rat striatum, Lrrk2 transcription is first observed at postnatal day (P) 8 followed by increasing mRNA levels during the following 3 weeks, as revealed by quantitative in situ hybridization, after which levels remain up to 24 months of age. The time-course of postnatal development of Lrrk2 activity in striatum thus closely mirrors the postnatal development of the dopamine innervation of striatum. Lrrk2 mRNA is seen in P1 rat lung, heart, and kidney, whereas Lrrk1 is found in many areas of the P1 rat. Lrrk1 is present in adult rat brain, adrenal gland, liver, lung, spleen and kidney and also in embryonic brain, with declining gene activity after birth. LRRK1 and LRRK2 are active in the adult human cortex cerebri, hippocampus and LRRK2, but not LRRK1, in striatum. Transcription of both genes is also seen in the young human thymus and LRRK2 is active in tubular parts of the adult human kidney. Our findings suggest that the two paralogous genes have partly complementary expression patterns in the brain, as well as in certain peripheral organs including lymphatic tissues. While the strong presence of Lrrk2 message in striatum is intriguing in relation to PD, the many other neuronal and non-neuronal sites of Lrrk2 activity also needs to be taken into account in deciphering possible pathogenic pathways.
Progress in Neurobiology | 2010
Marie Westerlund; Barry J. Hoffer; Lars Olson
Parkinsons disease was long considered a non-hereditary disorder. Despite extensive research trying to find environmental risk factors for the disease, genetic variants now stand out as the major causative factor. Since a number of genes have been implicated in the pathogenesis it seems likely that several molecular pathways and downstream effectors can affect the trophic support and/or the survival of dopamine neurons, subsequently leading to Parkinsons disease. The present review describes how toxin-based animal models have been valuable tools in trying to find the underlying mechanisms of disease, and how identification of disease-linked genes in humans has led to the development of new transgenic rodent models. The review also describes the current status of the most common genetic susceptibility factors for Parkinsons disease identified up to today.
Neuroscience Letters | 2007
Andrea Carmine Belin; Behnosh F. Björk; Marie Westerlund; Dagmar Galter; Olof Sydow; Charlotta Lind; Karin Pernold; Lina Rosvall; Anna Håkansson; Bengt Winblad; Hans Nissbrandt; Caroline Graff; Lars Olson
Mitochondrial (mt) dysfunction has been implicated in Alzheimers (AD) and Parkinsons disease (PD). Mitochondrial transcription factor A (TFAM) is needed for mtDNA maintenance, regulating mtDNA copy number and is absolutely required for transcriptional initiation at mtDNA promoters. Two genetic variants in TFAM have been reported to be associated with AD in a Caucasian case-control material collected from Germany, Switzerland and Italy. One of these variants was reported to show a tendency for association with AD in a pooled Scottish and Swedish case-control material and the other variant was reported to be associated with AD in a recent meta-analysis. We investigated these two genetic variants, rs1937 and rs2306604, in an AD and a PD case-control material, both from Sweden and found significant genotypic as well as allelic association to marker rs2306604 in the AD case-control material (P=0.05 and P=0.03, respectively), where the A-allele appears to increase risk for developing AD. No association was observed for marker rs1937. We did not find any association in the PD case-control material for either of the two markers. The distribution of the two-locus haplotype frequencies (based on rs1937 and rs2306604) did not differ significantly between affected individuals and controls in the two sample sets. However, the global P-value for haplotypic association testing indicated borderline association in the AD sample set. Our data suggests that the rs2306604 A-allele could be a moderate risk factor for AD, which is supported by the recent meta-analysis.
Movement Disorders | 2006
Andrea Carmine Belin; Marie Westerlund; Olof Sydow; Karin Lundströmer; Anna Håkansson; Hans Nissbrandt; Lars Olson; Dagmar Galter
Specific variants of Leucine‐rich repeat kinase 2 (LRRK2) have been shown to associate with Parkinsons disease (PD). Several mutations have been found in PD populations from different parts of the world. We investigated the occurrence of three mutations (R1441G/C/H, G2019S, and I2020T) in our Swedish case–control material and identified four carriers of the G2019S mutation in 284 PD cases and 1 95‐year‐old carrier in 305 controls. The other two variants were absent in our material. We conclude that the LRRK2 G2019S mutation constitutes a significant factor for PD in the Swedish population and that it is not completely penetrant.
Parkinsonism & Related Disorders | 2009
Marie Westerlund; Andrea Carmine Belin; Anna Anvret; Anna Håkansson; Hans Nissbrandt; Charlotta Lind; Olof Sydow; Lars Olson; Dagmar Galter
The ATP-binding cassette, sub-family B, member 1 (ABCB1) gene encoding the protein P-glycoprotein (P-gp) has been implicated in the pathophysiology of Parkinsons disease (PD) due to its role in regulating transport of endogenous molecules and exogenous toxins. In the present study, we analyzed the ABCB1 single nucleotide polymorphisms (SNPs) 1236C/T (exon 12), 2677G/T/A (exon 21) and 3435C/T (exon 26) in 288 Swedish PD patients and 313 control subjects and found a significant association of SNP 1236C/T with disease (p=0.0159; chi(2)=8.28), whereas the distributions of wild-type and mutated alleles were similar for 2677G/T/A and 3435C/T in patients and controls. Haplotype analysis revealed significant association of the 1236C-2677G haplotype with PD (p=0.026; chi(2)=4.955) and a trend towards association with disease of the 1236C-2677G-3435C haplotype (p=0.072; chi(2)=3.229). Altered ABCB1 and/or P-pg expression was recently shown in PD patients, and impaired drug efflux across barriers such as the gastrointestinal and nasal mucosal linings or the blood-brain barrier, might result in accumulation of drugs and/or endogenous molecules in toxic amounts, possibly contributing to disease. ABCB1 polymorphisms thus constitute an example of how genetic predisposition and environmental influences may combine to increase risk of PD.