Marieke Hoonakker
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marieke Hoonakker.
Vaccine | 2010
Marieke Hoonakker; Nicole Ruiterkamp; Coenraad Hendriksen
Safety requirements stipulate the performance of the in vivo Histamine Sensitization (HS) test for quality control of acellular pertussis (aP) vaccines. For reasons of reproducibility and animal welfare concern, an in vitro assay was developed. The assay reflects the mechanism of histamine sensitization and is based on cAMP production in A10 cells to residual pertussis toxin (PT). We showed that PT induces cAMP levels in a dose-dependent manner while the sensitivity of the assay equals the sensitivity of the HS test. Neither the individual components nor the combination vaccine DTaP-IP did affect the assay. The cAMP assay meets the criteria for specificity and sensitivity and therefore might be a promising candidate to replace the HS test.
Biologicals | 2015
Marieke Hoonakker; Lisa M. Verhagen; Coenraad Hendriksen; C.A.C.M. van Els; Rob J. Vandebriel; Arjen Sloots; Wanda G. H. Han
Lot release testing of vaccines is primarily based on animal models that are costly, time-consuming and sometimes of questionable relevance. In order to reduce animal use, functional in vitro assays are being explored as an alternative approach for the current lot release testing paradigm. In this study, we present an evaluation of APC platforms assessing innate immune activation by whole cell Bordetella pertussis (wP) vaccines. Primary monocytes, monocyte-derived DC (moDC) and human monocyte/DC cell lines (MonoMac6 and MUTZ-3) were compared for their capacity to respond to wP vaccines of varying quality. To produce such vaccines, the production process of wP was manipulated, resulting in wP vaccines covering a range of in vivo potencies. The responses of MUTZ-3 cells and primary monocytes to these vaccines were marginal and these models were therefore considered inappropriate. Importantly, moDC and MonoMac6 cells responded to the wP vaccines and discriminated between vaccines of varying quality, although slight variations in the responses to wP vaccines of similar quality were also observed. This study provides a proof of principle for the use of in vitro APC platforms as part of a new strategy to assess wP vaccine lot consistency, though careful standardisation of assay conditions is necessary.
Particle and Fibre Toxicology | 2018
Rob J. Vandebriel; Jolanda P. Vermeulen; Laurens B. van Engelen; Britt de Jong; Lisa M. Verhagen; Liset J.J. de la Fonteyne-Blankestijn; Marieke Hoonakker; Wim H. de Jong
BackgroundThe use of engineered nanoparticles (NP) is widespread and still increasing. There is a great need to assess their safety. Newly engineered NP enter the market in a large variety; therefore safety evaluation should preferably be in a high-throughput fashion. In vitro screening is suitable for this purpose. TiO2NP exist in a large variety (crystal structure, coating and size), but information on their relative toxicities is scarce. TiO2NP may be inhaled by workers in e.g. paint production and application. In mice, inhalation of TiO2NP increases allergic reactions. Dendritic cells (DC) form an important part of the lung immune system, and are essential in adjuvant activity. The present study aimed to establish the effect of a variety of TiO2NP on DC maturation in vitro. Two NP of different crystal structure but similar in size, uncoated and from the same supplier, were evaluated for their adjuvant activity in vivo.MethodsImmature DC were differentiated in vitro from human peripheral blood monocytes. Exposure effects of a series of fourteen TiO2NP on cell viability, CD83 and CD86 expression, and IL-12p40 and TNF-α production were measured. BALB/c mice were intranasally sensitized with ovalbumin (OVA) alone, OVA plus anatase TiO2NP, OVA plus rutile TiO2NP, and OVA plus Carbon Black (CB; positive control). The mice were intranasally challenged with OVA. OVA-specific IgE and IgG1 in serum, cellular inflammation in bronchoalveolar lavage fluid (BALF) and IL-4 and IL-5 production in draining bronchial lymph nodes were evaluated.ResultsAll NP dispersions contained NP aggregates. The anatase NP and anatase/rutile mixture NP induced a higher CD83 and CD86 expression and a higher IL-12p40 production in vitro than the rutile NP (including coated rutile NP and a rutile NP of a 10-fold larger primary diameter). OVA-specific serum IgE and IgG1 were increased by anatase NP, rutile NP, and CB, in the order rutile<anatase<CB. The three particles similarly increased IL-4 and IL-5 production by bronchial LN cells and eosinophils and lymphocytes in the BALF. Neutrophils were induced by rutile NP and CB but not by anatase NP.ConclusionsOur data show that measuring CD83 and CD86 expression and IL-12p40 and TNF-α production in DC in vitro may provide an efficient way to screen NP for potential adjuvant activity; future studies should establish whether this also holds for other NP. Based on antigen-specific IgE and IgG1, anatase NP have higher adjuvant activity than rutile NP, confirming our in vitro data. Other parameters of the allergic response showed a similar response for the two NP crystal structures. From the viewpoint of safe(r) by design products, rutile NP may be preferred over anatase NP, especially when inhalation exposure can be expected during production or application of the product.
Vaccine | 2017
Marieke Hoonakker; Lisa M. Verhagen; Larissa van der Maas; Arjen Sloots; Coenraad Hendriksen
Detoxified pertussis toxin (pertussis toxoid) is a major antigen in acellular pertussis vaccines. Testing these vaccines on the presence of residual pertussis toxin (PTx) and reversion to toxicity is performed by the regulatory required in vivo Histamine Sensitization test (HIST). Lack of mechanistic understanding of the HIST, technical handicaps and animal welfare concerns, have promoted the development of alternative methods. As the majority of the cellular effects of PTx depend on its ability to activate intracellular pathways involving cAMP, the in vitro cAMP-PTx assay was developed. Although this assay could be used to detect PTx activity, it lacked sensitivity and robustness for use in a quality control setting. In the present study, novel reporter cell lines (CHO-CRE and A10-CRE) were generated that stably express a reporter construct responsive to changes in intracellular cAMP levels. These reporter cell lines were able to detect PTx in a concentration-dependent manner when combined with fixed amounts of forskolin. The CHO-CRE cell line enabled detection of PTx in the context of a multivalent vaccine containing aP, with a sensitivity equal to the HIST. However, the sensitivity of the A10-CRE cells was insufficient for this purpose. The experiments also suggest that the CHO-CRE reporter cell line might be suitable for assessment of cellular effects of PTd reverted to PTx. The CHO-CRE reporter cell line provides a platform that meets the criteria for specificity and sensitivity and is a promising in vitro model with potential to replace the HIST.
Human Vaccines & Immunotherapeutics | 2017
Marieke Hoonakker; Juan Arciniega; Coenraad Hendriksen
ABSTRACT The current test of acellular Bordetella pertussis (aP) vaccines for residual pertussis toxin (PTx) is the Histamine Sensitization test (HIST), based on the empirical finding that PTx sensitizes mice to histamine. Although HIST has ensured the safety of aP vaccines for years, it is criticized for the limited understanding of how it works, its technical difficulty, and for animal welfare reasons. To estimate the number of mice used worldwide for HIST, we surveyed major aP manufacturers and organizations performing, requiring, or recommending the test. The survey revealed marked regional differences in regulatory guidelines, including the number of animals used for a single test. Based on information provided by the parties surveyed, we estimated the worldwide number of mice used for testing to be 65,000 per year: ∼48,000 by manufacturers and ∼17,000 by national control laboratories, although the latter number is more affected by uncertainty, due to confidentiality policies. These animals covered the release of approximately 850 final lots and 250 in-process lots of aP vaccines yearly. Although there are several approaches for HIST refinement and reduction, we discuss why the efforts needed for validation and implementation of these interim alternatives may not be worthwhile, when there are several in vitro alternatives in various stages of development, some already fairly advanced. Upon implementation, one or more of these replacement alternatives can substantially reduce the number of animals currently used for the HIST, although careful evaluation of each alternatives mechanism and its suitable validation will be necessary in the path to implementation.
Vaccine | 2016
Marieke Hoonakker; Lisa M. Verhagen; L. van der Maas; Bernard Metz; Joost P. Uittenbogaard; B. van de Waterbeemd; C.A.C.M. van Els; W. van Eden; Coenraad Hendriksen; Arjen Sloots; Wanda G. H. Han
Whole cell Bordetella pertussis (wP) vaccines are still used in many countries to protect against the respiratory disease pertussis. The potency of whole-cell pertussis vaccine lots is determined by an intracerebral challenge test (the Kendrick test). This test is criticized due to lack of immunological relevance of the read-out after an intracerebral challenge with B. pertussis. The alternative in vivo test, which assesses specific antibody levels in serum after wP vaccination, is the Pertussis Serological Potency test (PSPT). Although the PSPT focuses on a parameter that contributes to protection, the protective immune mechanisms after wP vaccination includes more elements than specific antibody responses only. In this study, additional parameters were investigated, i.e. circulating pro-inflammatory cytokines, antibody specificity and T helper cell responses and it was evaluated whether they can be used as complementary readout parameters in the PSPT to assess wP lot quality. By deliberate manipulation of the vaccine preparation procedure, a panel of high, intermediate and low quality wP vaccines were made. The results revealed that these vaccines induced similar IL-6 and IP10 levels in serum 4h after vaccination (innate responses) and similar antibody levels directed against the entire bacterium. In contrast, the induced antibody specificity to distinct wP antigens differed after vaccination with high, intermediate and low quality wP vaccines. In addition, the magnitude of wP-induced Th cell responses (Th17, Th1 and Th2) was reduced after vaccination with a wP vaccine of low quality. T cell responses and antibody specificity are therefore correlates of qualitative differences in the investigated vaccines, while the current parameter of the PSPT alone was not sensitive enough to distinguish between vaccines of different qualities. This study demonstrates that assessment of the magnitude of Th cell responses and the antigen specificity of antibodies induced by wP vaccination could form valuable complementary parameters to the PSPT.
PLOS ONE | 2016
Marieke Hoonakker; Lisa M. Verhagen; Elder Pupo; Alex de Haan; Bernard Metz; Coenraad Hendriksen; Wanda G. H. Han; Arjen Sloots
The potency of whole-cell pertussis (wP) vaccines is still determined by an intracerebral mouse protection test. To allow development of suitable in vitro alternatives to this test, insight into relevant parameters to monitor the consistency of vaccine quality is essential. To this end, a panel of experimental wP vaccines of varying quality was prepared by sulfate-mediated suppression of the BvgASR master virulence regulatory system of Bordetella pertussis during cultivation. This system regulates the transcription of a range of virulence proteins, many of which are considered important for the induction of effective host immunity. The protein compositions and in vivo potencies of the vaccines were BvgASR dependent, with the vaccine containing the highest amount of virulence proteins having the highest in vivo potency. Here, the capacities of these vaccines to stimulate human Toll-like receptors (hTLR) 2 and 4 and the role these receptors play in wP vaccine-mediated activation of antigen-presenting cells in vitro were studied. Prolonged BvgASR suppression was associated with a decreased capacity of vaccines to activate hTLR4. In contrast, no significant differences in hTLR2 activation were observed. Similarly, vaccine-induced activation of MonoMac-6 and monocyte-derived dendritic cells was strongest with the highest potency vaccine. Blocking of TLR2 and TLR4 showed that differences in antigen-presenting cell activation could be largely attributed to vaccine-dependent variation in hTLR4 signalling. Interestingly, this BvgASR-dependent decrease in hTLR4 activation coincided with a reduction in GlcN-modified lipopolysaccharides in these vaccines. Accordingly, expression of the lgmA-C genes, required for this glucosamine modification, was significantly reduced in bacteria exposed to sulfate. Together, these findings demonstrate that the BvgASR status of bacteria during wP vaccine preparation is critical for their hTLR4 activation capacity and suggest that including such parameters to assess consistency of newly produced vaccines could bring in vitro testing of vaccine quality a step closer.
Biologicals | 2012
Christina Bache; Marieke Hoonakker; Coenraad Hendriksen; Karl-Heinz Buchheit; Ingo Spreitzer; Thomas Montag
Biologicals | 2014
Richard Isbrucker; Juan Arciniega; Richard McFarland; Jean-Michel Chapsal; Dorothy Xing; Christina Bache; Sue Nelson; Angele Costanzo; Marieke Hoonakker; Amélie Castiaux; Marlies Halder; Warren Casey; Nelson Johnson; Brett Jones; Vivian Doelling; Cathy Sprankle; Lori Rinckel; William S. Stokes
Biologicals | 2017
Martijn Wp Bruysters; Marie-Jeanne W.A. Schiffelers; Marieke Hoonakker; Carmen Jungbaeck; Ian Ragan; Eddy Rommel; Ton van der Stappen; Laura Viviani; Ellen V. Hessel; Arnoud Akkermans; Rob J. Vandebriel