Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marieke J. W. Jeuken is active.

Publication


Featured researches published by Marieke J. W. Jeuken.


The Plant Cell | 2009

Rin4 Causes Hybrid Necrosis and Race-Specific Resistance in an Interspecific Lettuce Hybrid

Marieke J. W. Jeuken; Ningwen W. Zhang; Leah K. McHale; Koen T. B. Pelgrom; Erik den Boer; Pim Lindhout; Richard W. Michelmore; Richard G. F. Visser; Rients E. Niks

Some inter- and intraspecific crosses may result in reduced viability or sterility in the offspring, often due to genetic incompatibilities resulting from interactions between two or more loci. Hybrid necrosis is a postzygotic genetic incompatibility that is phenotypically manifested as necrotic lesions on the plant. We observed hybrid necrosis in interspecific lettuce (Lactuca sativa and Lactuca saligna) hybrids that correlated with resistance to downy mildew. Segregation analysis revealed a specific allelic combination at two interacting loci to be responsible. The allelic interaction had two consequences: (1) a quantitative temperature-dependent autoimmunity reaction leading to necrotic lesions, lethality, and quantitative resistance to an otherwise virulent race of Bremia lactucae; and (2) a qualitative temperature-independent race-specific resistance to an avirulent race of B. lactucae. We demonstrated by transient expression and silencing experiments that one of the two interacting genes was Rin4. In Arabidopsis thaliana, RIN4 is known to interact with multiple R gene products, and their interactions result in hypersensitive resistance to Pseudomonas syringae. Site-directed mutation studies on the necrosis-eliciting allele of Rin4 in lettuce showed that three residues were critical for hybrid necrosis.


Theoretical and Applied Genetics | 2004

The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm

Marieke J. W. Jeuken; Pim Lindhout

Backcross inbred lines (BILs) were developed in which chromosome segments of Lactuca saligna (wild lettuce) were introgressed into L. sativa (lettuce). These lines were developed by four to five backcrosses and one generation of selfing. The first three generations of backcrossing were random. Marker-assisted selection began in the BC4 generation and continued until the final set of BILs was reached. A set of 28 lines was selected that together contained 96% of the L. saligna genome. Of these lines, 20 had a single homozygous introgression (BILs), four had two homozygous introgressions (doubleBILs) and four lines had a heterozygous single introgression (preBILs). Segregation ratios in backcross generations were compared to distorted segregation ratios in an F2 population, and the results indicated that most of the distorted segregations can be explained by genetic effects on pollen- or egg-cell fitness. By means of BIL association mapping we were able to map 12 morphological traits and hundreds of additional amplified fragment length polymorphic (AFLP) markers. The total AFLP map now comprises 757 markers. This set of BILs is very useful for future genetic studies.


Theoretical and Applied Genetics | 2001

An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. Saligna x L. sativa F2-populations

Marieke J. W. Jeuken; R. van Wijk; J. Peleman; Pim Lindhout

Abstract AFLP markers were obtained with 12 EcoRI/ MseI primer combinations on two independent F2 populations of Lactuca sativa ×Lactuca saligna. The polymorphism rates of the AFLP products between the two different L. saligna lines was 39%, between the two different L. sativa cultivars 13% and between the L. sativa and L. saligna parents on average 81%. In both F2 populations segregation distortion was found, but only Chromosome 5 showed skewness that was similar for both populations. Two independent genetic maps of the two F2 populations were constructed that could be integrated due to the high similarity in marker order and map distances of 124 markers common to both populations. The integrated map consisted of 476 AFLP markers and 12 SSRs on nine linkage groups spanning 854 cM. The AFLP markers on the integrated map were randomly distributed with an average spacing between markers of 1.8 cM and a maximal distance of 16 cM. Furthermore, the AFLP markers did not show severe clustering. This AFLP map provides good opportunities for use in QTL mapping and marker-assisted selection.


Theoretical and Applied Genetics | 2002

Lactuca saligna, a non-host for lettuce downy mildew ( Bremia lactucae), harbors a new race-specific Dm gene and three QTLs for resistance.

Marieke J. W. Jeuken; Pim Lindhout

Abstract.Lactuca sativa (lettuce) is susceptible to Bremia lactucae (downy mildew). In cultivated and wild Lactuca species, Dm genes have been identified that confer race-specific resistance. However, these genes were soon rendered ineffective by adaptation of the pathogen. Lactuca saligna (wild lettuce) is resistant to all downy mildew races and can be considered as a non-host. Therefore, L. saligna might be an alternative source for a more-durable resistance to downy mildew in lettuce. In order to analyze this resistance, we have developed an F2 population based on a resistant L. saligna × susceptible L. sativa cross. This F2 population was fingerprinted with AFLP markers and tested for resistance to two Bremia races NL14 and NL16. The F2 population showed a wide and continuous range of resistance levels from completely resistant to completely susceptible. By comparison of disease tests, we observed a quantitative resistance against both Bremia races as well as a race-specific resistance to Bremia race NL16 and not to NL14. QTL mapping revealed a qualitative gene (R39) involved in the race-specific resistance and three QTLs (RBQ1, RBQ2 and RBQ3) involved in the quantitative resistance. The qualitative gene R39 is a dominant gene that gives nearly complete resistance to race NL16 in L. saligna CGN 5271 and therefore it showed features similar to Dm genes. The three QTLs explained 51% of the quantitative resistance against NL14, which indicated that probably only the major QTLs have been detected in this F2 population. The perspectives for breeding for durable resistance are discussed.


Theoretical and Applied Genetics | 2008

Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F2 population

Marieke J. W. Jeuken; Koen T. B. Pelgrom; P. Stam; Pim Lindhout

In plants, several population types [F2, recombinant inbred lines, backcross inbred lines (BILs), etc.] are used for quantitative trait locus (QTL) analyses. However, dissection of the trait of interest and subsequent confirmation by introgression of QTLs for breeding purposes has not been as successful as that predicted from theoretical calculations. More practical knowledge of different QTL mapping approaches is needed. In this recent study, we describe the detection and mapping of quantitative resistances to downy mildew in a set of 29 BILs of cultivated lettuce (L. sativa) containing genome segments introgressed from wild lettuce (L. saligna). Introgression regions that are associated with quantitative resistance are considered to harbor a QTL. Furthermore, we compare this with results from an already existing F2 population derived from the same parents. We identified six QTLs in our BIL approach compared to only three in the F2 approach, while there were two QTLs in common. We performed a simulation study based on our actual data to help us interpret them. This revealed that two newly detected QTLs in the BILs had gone unnoticed in the F2, due to a combination of recessiveness of the trait and skewed segregation, causing a deficit of the wild species alleles. This study clearly illustrates the added value of extended genetic studies on two different population types (BILs and F2) to dissect complex genetic traits.


Molecular Plant-microbe Interactions | 2009

Three Combined Quantitative Trait Loci from Nonhost Lactuca saligna Are Sufficient to Provide Complete Resistance of Lettuce Against Bremia lactucae

Ningwen W. Zhang; Koen T. B. Pelgrom; Rients E. Niks; Richard G. F. Visser; Marieke J. W. Jeuken

The nonhost resistance of wild lettuce (Lactuca saligna) to downy mildew (Bremia lactucae) is based on at least 15 quantitative trait loci (QTL), each effective at one or more plant developmental stages. We used QTL pyramiding (stacking) to determine how many of these QTL from L. saligna are sufficient to impart complete resistance towards B. lactucae to cultivated lettuce, L. sativa. The alleles of four of the most promising QTL, rbq4, rbq5, rbq6+11, and rbq7 are effective at both the young and adult plant stages. Lines with these four QTL in all possible combinations were generated by crossing the respective backcross inbred lines (BIL). Using the 11 resulting lines (combiBIL), we determined that combinations of three QTL, rbq4, rbq5, and rbq6+11, led to increased levels of resistance; however, one QTL, rbq7, did not add to the resistance level when combined with the other QTL. One line, tripleBIL268, which contains the three QTL rbq4, rbq5, and rbq6+11, was completely resistant to B. lactucae at the young plant stage. This suggests that these three QTL are sufficient to confer the complete resistance of the nonhost L. saligna and any additional QTL in L. saligna are redundant. Histological analysis of B. lactucae infection in L. saligna, the BIL, and the combiBIL 48 h after inoculation revealed different microscopical phenotypes of resistance. The QTL differed with respect to the stage of the infection process with which they interfered.


Molecular Plant-microbe Interactions | 2013

Specific In Planta Recognition of Two GKLR Proteins of the Downy Mildew Bremia lactucae Revealed in a Large Effector Screen in Lettuce

Joost H. M. Stassen; Erik den Boer; Pim W. J. Vergeer; Annemiek Andel; Ursula Ellendorff; Koen T. B. Pelgrom; Mathieu A. Pel; Johan Schut; Olaf Zonneveld; Marieke J. W. Jeuken; Guido Van den Ackerveken

Breeding lettuce (Lactuca sativa) for resistance to the downy mildew pathogen Bremia lactucae is mainly achieved by introgression of dominant downy mildew resistance (Dm) genes. New Bremia races quickly render Dm genes ineffective, possibly by mutation of recognized host-translocated effectors or by suppression of effector-triggered immunity. We have previously identified 34 potential RXLR(-like) effector proteins of B. lactucae that were here tested for specific recognition within a collection of 129 B. lactucae-resistant Lactuca lines. Two effectors triggered a hypersensitive response: BLG01 in 52 lines, predominantly L. saligna, and BLG03 in two L. sativa lines containing Dm2 resistance. The N-terminal sequences of BLG01 and BLG03, containing the signal peptide and GKLR variant of the RXLR translocation motif, are not required for in planta recognition but function in effector delivery. The locus responsible for BLG01 recognition maps to the bottom of lettuce chromosome 9, whereas recognition of BLG03 maps in the RGC2 cluster on chromosome 2. Lactuca lines that recognize the BLG effectors are not resistant to Bremia isolate Bl:24 that expresses both BLG genes, suggesting that Bl:24 can suppress the triggered immune responses. In contrast, lettuce segregants displaying Dm2-mediated resistance to Bremia isolate Bl:5 are responsive to BLG03, suggesting that BLG03 is a candidate Avr2 protein.


New Phytologist | 2017

Effector‐mediated discovery of a novel resistance gene against Bremia lactucae in a nonhost lettuce species

Anne K. J. Giesbers; Alexandra Je Pelgrom; Richard G. F. Visser; Rients E. Niks; Guido Van den Ackerveken; Marieke J. W. Jeuken

Summary Candidate effectors from lettuce downy mildew (Bremia lactucae) enable high‐throughput germplasm screening for the presence of resistance (R) genes. The nonhost species Lactuca saligna comprises a source of B. lactucae R genes that has hardly been exploited in lettuce breeding. Its cross‐compatibility with the host species L. sativa enables the study of inheritance of nonhost resistance (NHR). We performed transient expression of candidate RXLR effector genes from B. lactucae in a diverse Lactuca germplasm set. Responses to two candidate effectors (BLR31 and BLN08) were genetically mapped and tested for co‐segregation with disease resistance. BLN08 induced a hypersensitive response (HR) in 55% of the L. saligna accessions, but responsiveness did not co‐segregate with resistance to Bl:24. BLR31 triggered an HR in 5% of the L. saligna accessions, and revealed a novel R gene providing complete B. lactucae race Bl:24 resistance. Resistant hybrid plants that were BLR31 nonresponsive indicated other unlinked R genes and/or nonhost QTLs. We have identified a candidate avirulence effector of B. lactucae (BLR31) and its cognate R gene in L. saligna. Concurrently, our results suggest that R genes are not required for NHR of L. saligna.


Theoretical and Applied Genetics | 2018

Bidirectional backcrosses between wild and cultivated lettuce identify loci involved in nonhost resistance to downy mildew

Anne K. J. Giesbers; Erik den Boer; David N. J. Braspenning; Thijs P. H. Bouten; Johan W. Specken; Martijn van Kaauwen; Richard G. F. Visser; Rients E. Niks; Marieke J. W. Jeuken

Key messageThe nonhost resistance of wild lettuce to lettuce downy mildew seems explained by four components of a putative set of epistatic genes.AbstractThe commonplace observation that plants are immune to most potential pathogens is known as nonhost resistance (NHR). The genetic basis of NHR is poorly understood. Inheritance studies of NHR require crosses of nonhost species with a host, but these crosses are usually unsuccessful. The plant-pathosystem of lettuce and downy mildew, Bremia lactucae, provides a rare opportunity to study the inheritance of NHR, because the nonhost wild lettuce species Lactuca saligna is sufficiently cross-compatible with the cultivated host Lactuca sativa. Our previous studies on NHR in one L. saligna accession led to the hypothesis that multi-locus epistatic interactions might explain NHR. Here, we studied NHR at the species level in nine accessions. Besides the commonly used approach of studying a target trait from a wild donor species in a cultivar genetic background, we also explored the opposite, complementary approach of cultivar introgression in a wild species background. This bidirectional approach encompassed (1) nonhost into host introgression: identification of L. saligna derived chromosome regions that were overrepresented in highly resistant BC1 plants (F1 × L. sativa), (2) host into nonhost introgression: identification of L. sativa derived chromosome regions that were overrepresented in BC1 inbred lines (F1 × L. saligna) with relatively high infection levels. We demonstrated that NHR is based on resistance factors from L. saligna and the genetic dose for NHR differs between accessions. NHR seemed explained by combinations of epistatic genes on three or four chromosome segments, of which one chromosome segment was validated by the host into nonhost approach.


Theoretical and Applied Genetics | 2007

A high-density, integrated genetic linkage map of lettuce ( Lactuca spp.)

Maria Jose Truco; Rudie Antonise; D. Lavelle; Oswaldo Ochoa; Alexander Kozik; H. Witsenboer; S. B. Fort; Marieke J. W. Jeuken; Rick Kesseli; Pim Lindhout; Richard W. Michelmore; J. Peleman

Collaboration


Dive into the Marieke J. W. Jeuken's collaboration.

Top Co-Authors

Avatar

Pim Lindhout

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Rients E. Niks

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Koen T. B. Pelgrom

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Richard G. F. Visser

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Erik den Boer

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ningwen W. Zhang

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne K. J. Giesbers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge