Marieke L. de Kam
Leiden University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marieke L. de Kam.
Nature Medicine | 2015
Jacobus Burggraaf; Ingrid M. C. Kamerling; Paul Gordon; Lenneke Schrier; Marieke L. de Kam; Andrea J Kales; Ragnar Bendiksen; Bård Indrevoll; Roger M. Bjerke; Siver A. Moestue; Siavash Yazdanfar; Alexandra M. J. Langers; Marit Swaerd-Nordmo; Geir Torheim; Madhuri Warren; Hans Morreau; Philip W. Voorneveld; Tessa Buckle; Fijs W. B. van Leeuwen; Liv-Ingrid Ødegårdstuen; Grethe Tang Dalsgaard; Andrew Healey; James C. Hardwick
Colon cancer prevention currently relies on colonoscopy using white light to detect and remove polyps, but small and flat polyps are difficult to detect and frequently missed when using this technique. Fluorescence colonoscopy combined with a fluorescent probe specific for a polyp biomarker may improve polyp detection. Here we describe GE-137, a water-soluble probe consisting of a 26–amino acid cyclic peptide that binds the human tyrosine kinase c-Met conjugated to a fluorescent cyanine dye. Intravenous administration of GE-137 leads to its accumulation specifically in c-Met–expressing tumors in mice, and it is safe and well tolerated in humans. Fluorescence colonoscopy in patients receiving intravenous GE-137 enabled visualization of all neoplastic polyps that were visible with white light (38), as well as an additional nine polyps that were not visible with white light. This first-in-human pilot study shows that molecular imaging using an intravenous fluorescent agent specific for c-Met is feasible and safe, and that it may enable the detection of polyps missed by other techniques.
The Lancet Respiratory Medicine | 2013
Lui Franciosi; Zuzana Diamant; Katharine H. Banner; Rob G.J.A. Zuiker; Nicoletta Morelli; Ingrid M. C. Kamerling; Marieke L. de Kam; Jacobus Burggraaf; Adam F. Cohen; Mario Cazzola; Luigino Calzetta; Dave Singh; Domenico Spina; Michael J A Walker; Clive P. Page
BACKGROUND Many patients with asthma or chronic obstructive pulmonary disease (COPD) routinely receive a combination of an inhaled bronchodilator and anti-inflammatory glucocorticosteroid, but those with severe disease often respond poorly to these classes of drug. We assessed the efficacy and safety of a novel inhaled dual phosphodiesterase 3 (PDE3) and PDE4 inhibitor, RPL554 for its ability to act as a bronchodilator and anti-inflammatory drug. METHODS Between February, 2009, and January, 2013, we undertook four proof-of-concept clinical trials in the Netherlands, Italy, and the UK. Nebulised RPL554 was examined in study 1 for safety in 18 healthy men who were randomly assigned (1:1:1) to receive an inhaled dose of RPL554 (0·003 mg/kg or 0·009 mg/kg) or placebo by a computer-generated randomisation table. Subsequently, six non-smoking men with mild allergic asthma received single doses of RPL554 (three received 0·009 mg/kg and three received 0·018 mg/kg) in an open-label, adaptive study, and then ten men with mild allergic asthma were randomly assigned to receive placebo or RPL554 (0·018 mg/kg) by a computer-generated randomisation table for an assessment of safety, bronchodilation, and bronchoprotection. Study 2 examined the reproducibility of the bronchodilator response to a daily dose of nebulised RPL554 (0·018 mg/kg) for 6 consecutive days in a single-blind (patients masked), placebo-controlled study in 12 men with clinically stable asthma. The safety and bronchodilator effect of RPL554 (0·018 mg/kg) was assessed in study 3, an open-label, placebo-controlled crossover trial, in 12 men with mild-to-moderate COPD. In study 4, a placebo-controlled crossover trial, the effect of RPL554 (0·018 mg/kg) on lipopolysaccharide-induced inflammatory cell infiltration in induced sputum was investigated in 21 healthy men. In studies 3 and 4, randomisation was done by computer-generated permutation with a block size of two for study 3 and four for study 4. Unless otherwise stated, participants and clinicians were masked to treatment assignment. Analyses were by intention to treat. All trials were registered with EudraCT, numbers 2008-005048-17, 2011-001698-22, 2010-023573-18, and 2012-000742-34. FINDINGS Safety was a primary endpoint of studies 1 and 3 and a secondary endpoint of studies 2 and 4. Overall, RPL554 was well tolerated, and adverse events were generally mild and of equal frequency between placebo and active treatment groups. Efficacy was a primary endpoint of study 2 and a secondary endpoint of studies 1 and 3. Study 1 measured change in forced expiratory volume in 1 s (FEV1) and provocative concentration of methacholine causing a 20% fall in FEV1 (PC20MCh) in participants with asthma. RPL554 produced rapid bronchodilation in patients with asthma with an FEV1 increase at 1 h of 520 mL (95% CI 320-720; p<0·0001), which was a 14% increase from placebo, and increased the PC20MCh by 1·5 doubling doses (95% CI 0·63-2·28; p=0·004) compared with placebo. The primary endpoint of study 2 was maximum FEV1 reached during 6 h after dosing with RPL554 in patients with asthma. RPL554 produced a similar maximum mean increase in FEV1 from placebo on day 1 (555 mL, 95% CI 442-668), day 3 (505 mL, 392-618), and day 6 (485 mL, 371-598; overall p<0·0001). A secondary endpoint of study 3 (patients with COPD) was the increase from baseline in FEV1. RPL554 produced bronchodilation with a mean maximum FEV1 increase of 17·2% (SE 5·2). In healthy individuals (study 4), the primary endpoint was percentage change in neutrophil counts in induced sputum 6 h after lipopolysaccharide challenge. RPL554 (0·018 mg/kg) did not significantly reduce the percentage of neutrophils in sputum (80·3% in the RPL554 group vs 84·2% in the placebo group; difference -3·9%, 95% CI -9·4 to 1·6, p=0·15), since RPL554 significantly reduced neutrophils (p=0·002) and total cells (p=0·002) to a similar degree. INTERPRETATION In four exploratory studies, inhaled RPL554 is an effective and well tolerated bronchodilator, bronchoprotector, and anti-inflammatory drug and further studies will establish the full potential of this new drug for the treatment of patients with COPD or asthma. FUNDING Verona Pharma.
Science Translational Medicine | 2016
Marij J. P. Welters; Tetje C. van der Sluis; Hélène van Meir; Nikki M. Loof; Vanessa J. van Ham; Suzanne van Duikeren; Saskia J. A. M. Santegoets; Ramon Arens; Marieke L. de Kam; Adam F. Cohen; Mariette I.E. van Poelgeest; Gemma G. Kenter; Judith R. Kroep; Jacobus Burggraaf; Cornelis J. M. Melief; Sjoerd H. van der Burg
Therapeutic vaccination against HPV16 is effective with chemotherapy for advanced cervical cancer patients. Vaccinating cancer away Cervical cancer, a common killer of women worldwide, is most often caused by human papillomavirus type 16 (HPV16). Although a vaccine targeting this virus is available and very effective at preventing cervical cancer, it does not work once cancer is already established, and advanced cervical cancer is very difficult to treat. Welters et al. have developed a method of therapeutic vaccination, where they synthesize long peptides mimicking key oncogenic proteins from HPV16 and use them to treat patients. Although it is too early to tell how the new vaccine will affect patient survival, combining it with chemotherapy helped strengthen patients’ immune responses against the cancer, so it is a promising candidate for further clinical development. Therapeutic vaccination with human papillomavirus type 16 synthetic long peptides (HPV16-SLPs) results in T cell–mediated regression of HPV16-induced premalignant lesions but fails to install clinically effective immunity in patients with HPV16-positive cervical cancer. We explored whether HPV16-SLP vaccination can be combined with standard carboplatin and paclitaxel chemotherapy to improve immunity and which time point would be optimal for vaccination. This was studied in the HPV16 E6/E7–positive TC-1 mouse tumor model and in patients with advanced cervical cancer. In mice and patients, the presence of a progressing tumor was associated with abnormal frequencies of circulating myeloid cells. Treatment of TC-1–bearing mice with chemotherapy and therapeutic vaccination resulted in superior survival and was directly related to a chemotherapy-mediated altered composition of the myeloid cell population in the blood and tumor. Chemotherapy had no effect on tumor-specific T cell responses. In advanced cervical cancer patients, carboplatin-paclitaxel also normalized the abnormal numbers of circulating myeloid cells, and this was associated with increased T cell reactivity to recall antigens. The effect was most pronounced starting 2 weeks after the second cycle of chemotherapy, providing an optimal immunological window for vaccination. This was validated with a single dose of HPV16-SLP vaccine given in this time window. The resulting proliferative HPV16-specific T cell responses were unusually strong and were retained after all cycles of chemotherapy. In conclusion, carboplatin-paclitaxel therapy fosters vigorous vaccine-induced T cell responses when vaccination is given after chemotherapy and has reset the tumor-induced abnormal myeloid cell composition to normal values.
British Journal of Clinical Pharmacology | 2012
Linda E. Klumpers; Tim L. Beumer; Johan G. C. van Hasselt; Astrid Lipplaa; Lennard B. Karger; H. Daniël Kleinloog; Jan I. Freijer; Marieke L. de Kam; Joop M. A. van Gerven
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Cannabis based medicines are registered as a treatment for various indications, such as pain and spasms in multiple sclerosis (MS) patients, and anorexia and nausea in patients with HIV or receiving cancer treatment. • the pharmacokinetics of the various administration routes of cannabis and cannabis based medicines are variable and dosing is hard to regulate. WHAT THIS STUDY ADDS • Namisol is a new tablet containing pure THC (>98%) that has a beneficial pharmacokinetic profile after oral administration. • Namisol gives a quick onset of pharmacodynamic effects in healthy volunteers, which implies a rapid initiation of therapeutic effects in patients. AIMS Among the main disadvantages of currently available Δ(9) -tetrahydrocannabinol (THC) formulations are dosing difficulties due to poor pharmacokinetic characteristics. Namisol® is a novel THC formulation, designed to improve THC absorption. The study objectives were to investigate the optimal administration route, pharmacokinetics (PK), pharmacodynamics (PD) and tolerability of Namisol®. METHODS This first in human study consisted of two parts. Panel I included healthy males and females (n = 6/6) in a double-blind, double-dummy, randomized, crossover study with sublingual (crushed tablet) and oral administration of Namisol® (5 mg THC). Based on these results, male and female (n = 4/5) participants from panel I received oral THC 6.5 and 8.0 mg or matching placebo in a randomized, crossover, rising dose study during panel II. PD measurements were body sway; visual analogue scales (VAS) mood, psychedelic and heart rate. THC and 11-OH-THC population PK analysis was performed. RESULTS Sublingual administration showed a flat concentration profile compared with oral administration. Oral THC apparent t(1/2) was 72-80 min, t(max) was 39-56 min and C(max) 2.92-4.69 ng ml(-1) . THC affected body sway (60.8%, 95% CI 29.5, 99.8), external perception (0.078 log mm, 95% CI 0.019, 0.137), alertness (-2.7 mm, 95% CI -4.5, -0.9) feeling high (0.256 log mm, 95% CI 0.093, 0.418) and heart rate (5.6 beats min(-1) , 95% CI 2.7, 6.5). Namisol® was well tolerated. CONCLUSIONS Oral Namisol® showed promising PK and PD characteristics. Variability and t(max) of THC plasma concentrations were smaller for Namisol® than reported for studies using oral dronabinol and nabilone. This study was performed in a limited number of healthy volunteers. Therefore, future research on Namisol® should study clinical effects in patient populations.
Journal of Clinical Psychopharmacology | 2002
Harm J. Gijsman; Joop M. A. van Gerven; Marieke L. de Kam; Rik C. Schoemaker; M. S. M. Pieters; Margo Weemaes; Roel de Rijk; Jeroen van der Post; Adam F. Cohen
Single-dose administration of 5-hydroxytryptophan (5-HTP) is regularly used as a challenge test of the serotonergic system. The use of 5-HTP has been limited by an apparent small window between the occurrence of neuroendocrine endpoints and the occurrence of side effects. Therefore, many dosing strategies have been tried with and without concurrent administration of carbidopa, a peripheral inhibitor of the decarboxylation from 5-HTP to serotonin. The aim of the current study was to assess the relation between pharmacokinetics and pharmacodynamics of 5-HTP. Twelve healthy male volunteers were included in a placebo-controlled, randomized, four-way crossover, double-blind, single-dose investigation of oral 5-HTP with or without coadministration of carbidopa. The four dose regimens were placebo, 5-HTP 100 mg, 5-HTP 200 mg, and 5-HTP 100 mg with coadministration of carbidopa 100 mg and 50 mg at 3 hours before and 3 hours after the administration of 5-HTP, respectively. The last regimen resulted in a doubling of the elimination half-life, an apparent clearance at least 14 times smaller, and a 15.4 times greater area under the curve compared with 5-HTP 100 mg without carbidopa. Furthermore, it was the only regimen to induce a significant change in cortisol and prolactin. It did not induce any change in subjective psychologic symptoms or cardiovascular parameters, but it was the only regimen to induce some nausea in three participants. The authors conclude that this regimen of 5-HTP 100 mg plus carbidopa is a relatively simple, effective, and tolerable challenge of the presynaptic serotonergic system. Further increase of the dose of 5-HTP might improve the size of the effect on endpoints as long as the tolerability remains good.
British Journal of Clinical Pharmacology | 2013
Linda E. Klumpers; Marianne Fridberg; Marieke L. de Kam; Paul Brian Little; Niels Ole Jensen; Hendrik D. Kleinloog; Christian E. Elling; Joop M. A. van Gerven
AIM Cannabinoid receptor type 1 (CB1 ) antagonists show central side effects, whereas beneficial effects are most likely peripherally mediated. In this study, the peripherally selective CB1 antagonist TM38837 was studied in humans. METHODS This was a double-blind, randomized, placebo-controlled, crossover study. On occasions 1-4, 24 healthy subjects received 5 × 4 mg THC with TM38837 100 mg, 500 mg or placebo, or placebos only. During occasion 5, subjects received placebo TM38837 + THC with rimonabant 60 mg or placebo in parallel groups. Blood collections and pharmacodynamic (PD) effects were assessed frequently. Pharmacokinetics (PK) and PD were quantified using population PK-PD modelling. RESULTS The TM38837 plasma concentration profile was relatively flat compared with rimonabant. TM38837 showed an estimated terminal half-life of 771 h. THC induced effects on VAS feeling high, body sway and heart rate were partly antagonized by rimonabant 60 mg [-26.70% [90% confidence interval (CI) -40.9, -12.6%]; -7.10%, (90%CI -18.1, 5.3%); -7.30%, (90% CI -11.5%, -3.0%) respectively] and TM38837 500 mg [-22.10% (90% CI -34.9, -9.4%); -12.20% (90% CI -21.6%, -1.7%); -8.90% (90% CI -12.8%, -5.1%) respectively]. TM38837 100 mg had no measurable feeling high or body sway effects and limited heart rate effects. CONCLUSIONS Rimonabant showed larger effects than TM38837, but the heart rate effects were similar. TM38837 100 mg had no impact on CNS effects, suggesting that this dose does not penetrate the brain. This TM38837 dose is predicted to be at least equipotent to rimonabant with regard to metabolic disorders in rodent models. These results provide support for further development of TM38837 as a peripherally selective CB1 antagonist for indications such as metabolic disorders, with a reduced propensity for psychiatric side effects.
Journal of Psychopharmacology | 2010
Marieke Liem-Moolenaar; Erik T. te Beek; Marieke L. de Kam; Kl Franson; René S. Kahn; Ron Hijman; Daan Touw; Joop M. A. van Gerven
In this study, the hypothesis that haloperidol would lead to an amelioration of Δ9-tetrahydrocannabinol (THC)-induced ‘psychotomimetic’ effects was investigated. In a double-blind, placebo-controlled, partial three-way crossover ascending dose study the effects of THC, haloperidol and their combination were investigated in 35 healthy, male mild cannabis users, measuring Positive and Negative Syndrome Scale, Visual Analogue Scales for alertness, mood, calmness and psychedelic effects, saccadic and smooth pursuit eye measurements, electroencephalography, Body Sway, Stroop test, Visual and Verbal Learning Task, hormone levels and pharmacokinetics. Compared with placebo, THC significantly decreased smooth pursuit, Visual Analogue Scales alertness, Stroop test performance, immediate and delayed word recall and prolactin concentrations, and significantly increased positive and general Positive and Negative Syndrome Scale score, Visual Analogue Scales feeling high, Body Sway and electroencephalography alpha. Haloperidol reversed the THC-induced positive Positive and Negative Syndrome Scale increase to levels observed with haloperidol alone, but not THC-induced ‘high’ feelings. Compared with placebo, haloperidol significantly decreased saccadic peak velocity, smooth pursuit, Visual Analogue Scales mood and immediate and delayed word recall and significantly increased Body Sway, electroencephalography theta and prolactin levels. THC-induced increases in positive Positive and Negative Syndrome Scale but not in Visual Analogue Scales feeling high were reversed by haloperidol. This indicates that psychotic-like effects induced by THC are mediated by dopaminergic systems, but that other systems are involved in ‘feeling high’. Additionally, the clear reductions of psychotic-like symptoms by a clinically relevant dose of haloperidol suggest that THC administration may be a useful pharmacological cannabinoid model for psychotic effects in healthy volunteers.
The Journal of Clinical Pharmacology | 2015
Marloes van Dongen; Bart F. Geerts; Erin S. Morgan; Teresa A. Brandt; Marieke L. de Kam; Johannes A. Romijn; Adam F. Cohen; Sanjay Bhanot; Jacobus Burggraaf
Fasting and postprandial hyperglucagonemia in type 2 diabetes mellitus (T2DM) patients cause excessive hepatic glucose production (HGP), suggesting that attenuation of hepatic glucagon action could be a therapeutic strategy for T2DM. In this study we evaluated the safety, tolerability, PK, and pharmacodynamics in healthy human volunteers of single and multiple doses (50–400 mg) ISIS 325568, a 2′‐O‐MOE antisense (ASO) developed to reduce hepatic glucagon receptor (GCGR) mRNA expression. In the multiple dose cohorts, treatment consisted of eight doses of ISIS 325568 or placebo over 6‐weeks. Drug effects were assessed using serial fasting glucagon measurements and the glycemic response to a glucagon challenge at baseline and at the end of 6‐week treatment. ISIS 325568 was not associated with clinically relevant changes. Dose‐dependent predominantly mild injection site reactions were the most common side‐effect. Active treatment caused a gradual increase in fasting glucagon levels and, compared to placebo, a significantly blunted glucagon‐induced increase in plasma glucose AUC (24%, P < 0.0001) and HGP (13%, P = 0.007) at the 400 mg/week dose. Six weeks treatment with ISIS 325568 in healthy volunteers attenuated glucagon‐stimulated HGP and glucose excursions, supporting further evaluation of the GCGR antisense approach in patients with T2DM.
Journal of Dietary Supplements | 2011
Bart F. Geerts; Marloes van Dongen; Baukje Flameling; Matthijs Moerland; Marieke L. de Kam; Adam F. Cohen; Johannes A. Romijn; Cindy Gerhardt; Joris Kloek; Jacobus Burggraaf
ABSTRACT Lifestyle modifications, including diet, are important in the prevention and management of type 2 diabetes mellitus (T2DM). However, limited information is available on the effects of single doses of meal replacements, particularly with regard to their effect on postprandial glucose. Therefore, a study was performed comparing the effects of a single meal replacement in T2DM patients on postprandial serum glucose, insulin, and glucagon. This randomized, double-blind, partial cross-over study was performed in 36 T2DM patients who continued their oral anti-diabetic medication. Each patient received three out of four treatments separated by 7 days. The treatments were a proprietary casein hydrolysate (insuVida™) alone or with additional leucine, unhydrolyzed casein, or placebo. Blood sampling was done for 4 hr. Treatments were compared using repeated measures ANOVA. Results are given as an estimate of the difference (%) for the 4-hr epoch. Glucose concentrations were lowered by −4.7% by insuVida and insuVida plus added leucine compared to placebo (95% CI: −1.6 to −7.7%), while the effect of unhydrolyzed casein was −1.7% (−4.8 to 1.5%). Addition of leucine to insuVida induced the greatest increase in insulin (i.e., 51.8%; 41.1 to 63.4%). All three treatments increased glucagon concentrations by 14% (8 to 20%) compared to placebo. A single dose of insuVida™ with or without addition of leucine significantly lowered plasma glucose compared to placebo and intact casein in T2DM patients. This is most likely due to an insulinotropic effect of insuVida. The data suggest that this type of intervention may be a viable treatment strategy in T2DM.
The Lancet Haematology | 2017
Jules Heuberger; Joris I. Rotmans; Pim Gal; Frederik E Stuurman; Juliëtte van 't Westende; Titiaan E Post; Johannes Marlene Daniels; Matthijs Moerland; Peter L J van Veldhoven; Marieke L. de Kam; Herman Ram; Olivier de Hon; Jelle J. Posthuma; Jacobus Burggraaf; A. F. Cohen
BACKGROUND Substances that potentially enhance performance (eg, recombinant human erythropoietin [rHuEPO]) are considered doping and are therefore forbidden in sports; however, the scientific evidence behind doping is frequently weak. We aimed to determine the effects of rHuEPO treatment in well trained cyclists on maximal, submaximal, and race performance and on safety, and to present a model clinical study for doping research on other substances. METHODS We did this double-blind, randomised, placebo-controlled trial at the Centre for Human Drug Research in Leiden (Netherlands). We enrolled healthy, well trained but non-professional male cyclists aged 18-50 years and randomly allocated (1:1) them to receive abdominal subcutaneous injections of rHuEPO (epoetin β; mean dose 6000 IU per week) or placebo (0·9% NaCl) for 8 weeks. Randomisation was stratified by age groups (18-34 years and 35-50 years), with a code generated by a statistician who was not masked to the study. The primary outcome was exercise performance, measured as maximal power output (Pmax), maximal oxygen consumption VO2 max, and gross efficiency in maximal exercise tests with 25 W increments per 5 min, as lactate threshold and ventilatory threshold 1 (VT1) and 2 (VT2) at submaximal levels during the maximal exercise test, and as mean power, VO2, and heart rate in the submaximal exercise tests at the highest mean power output for 45 min in a laboratory setting and in a race to the Mont Ventoux (France) summit, using intention-to-treat analyses. The trial is registered with the Dutch Trial Registry (Nederlands Trial Register), number NTR5643. FINDINGS Between March 7, 2016, and April 13, 2016, we randomly assigned 48 participants to the rHuEPO group (n=24) or the placebo group (n=24). Mean haemoglobin concentration (9·6 mmol/L vs 9·0 mmol/L [estimated difference 0·6, 95% CI 0·4 to 0·8]) and maximal power output (351·55 W vs 341·23 W [10·32, 3·47 to 17·17]), and VO2 max (60·121 mL/min per kg vs 57·415 mL/min per kg [2·707, 0·911 to 4·503]) in a maximal exercise test were higher in the rHuEPO group compared with the placebo group. Submaximal exercise test parameters mean power output (283·18 W vs 277·28 W [5·90, -0·87 to 12·67]) and VO2 (50·288 mL/min per kg vs 49·642 mL/min per kg [0·646, -1·307 to 2·600]) at day 46, and Mont Ventoux race times (1 h 40 min 32 s vs 1 h 40 min 15 s [0·3%, -8·3 to 9·6]) did not differ between groups. All adverse events were grade 1-2 and were similar between both groups. No events of grade 3 or worse were observed. INTERPRETATION Although rHuEPO treatment improved a laboratory test of maximal exercise, the more clinically relevant submaximal exercise test performance and road race performance were not affected. This study shows that clinical studies with doping substances can be done adequately and safely and are relevant in determining effects of alleged performance-enhancing drugs. FUNDING Centre for Human Drug Research, Leiden.