Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariella Carrieri is active.

Publication


Featured researches published by Mariella Carrieri.


Toxicology Letters | 2010

Low air levels of benzene: Correlation between biomarkers of exposure and genotoxic effects

Maria Enrica Fracasso; Denise Doria; Giovanni Battista Bartolucci; Mariella Carrieri; Piero Lovreglio; Andrea Ballini; Leonardo Soleo; Giovanna Tranfo; Maurizio Manno

This study was aimed to identify useful biomarkers of exposure and effect in workers exposed to low levels of benzene, and to evaluate any correlations existing between these parameters. Benzene exposure was measured in 33 petrochemical industry operators (PIO), 28 service station attendants (SSA), 21 gasoline pump maintenance workers (GPMW) and 51 non-exposed controls by GC-FID analysis. Samples were collected with personal passive samplers (Radiello). End-shift urine samples were collected for t,t-muconic acid (t,t-MA) determination by HPLC and for S-phenylmercapturic acid (S-PMA) measurement by HPLC-MS/MS. The alkaline version of the comet assay and, in a subgroup of 19 SSA and 16 control subjects, chromosomal aberrations (CA) and glutathione (GSH) levels were measured in peripheral blood lymphocytes. Personal benzene exposure was significantly higher in PIO, SSA and GPMW as compared to controls. The urinary excretion of the two metabolites showed a significant increase in SSA (p=0.0258 and p=0.0001, for t,t-MA and S-PMA, respectively) and in PIO (p=0.0013 and p=0.0001, for t,t-MA and S-PMA, respectively) as compared with the control group, while no such increase was observed for GPMW, for whom occupational exposure was not continuous and occurred on specific working days only. Significant increases of DNA damage were found by the comet assay for tail moment (TM) and tail length (TL) in SSA (p<0.0001 and p=0.008, for TM and TL, respectively) and PIO (p<0.0001 and p<0.0001, for TM and TL, respectively) when compared with controls. The PIO group also displayed a significant increase in the number of cells with comet (p<0.0001). Smoking habits did not appear to interfere with these results in any of the groups. No difference was found in percentage of CA between exposed workers and controls. Significant correlations were found, in all groups, between benzene exposure and the more representative comet parameter TM (r=0.509, p=0.007; r=0.525, p=0.017 and r=0.420, p=0.046 in SSA, GPMW, and PIO, respectively). A trend of negative correlation was observed between DNA damage and either GSH or urine S-PMA for exposed workers. In summary, in present study urinary S-PMA and DNA damage by the comet assay were both sensitive to exposure to low levels of benzene, and GSH seems to play an important defence role against benzene-dependent DNA damage.


Toxicology Letters | 2010

Correlation between environmental and biological monitoring of exposure to benzene in petrochemical industry operators

Mariella Carrieri; Giovanna Tranfo; Daniela Pigini; Enrico Paci; Fabiola Salamon; Maria Luisa Scapellato; Maria Enrica Fracasso; Maurizio Manno; Giovanni Battista Bartolucci

The present work was aimed to study in petrochemical industry operators the correlation, if any, between environmental exposure to low levels of benzene and two biological exposure indexes in end-shift urine, i.e. trans, trans-muconic acid (t,t-MA) and S-phenylmercapturic acid (SPMA). Exposure to benzene was assessed in 133 male subjects employed in outdoor operations in a petrochemical plant, using personal passive-diffusive air samplers worn at the breathing zone; adsorbed benzene was determined by GC-FID analysis. S-PMA was determined by a new HPLCMS/MS method, after (quantitative) acidic hydrolysis of the cysteine conjugate precursor. t,t-MA was measured by an HPLC-UV method. Smoking habits were assessed by means of a self-administered questionnaire. Both environmental and biological monitoring data showed that benzene exposure of petrochemical industry operators was low (mean values were 0.014ppm, 101mug/g creat, and 2.8mug/g creat, for benzene, t,t-MA, and S-PMA, respectively) if compared with the ACGIH limits. Cigarette smoking was confirmed to be a strong confounding factor for the urinary excretion of both metabolites: statistically significant increases of t,t-MA and S-PMA levels were recorded in smokers when compared to non-smokers (p<0.0001). The best correlation found was that between exposure to benzene and S-PMA levels, particularly in non-smokers. This was partly due to the hydrolysis of the S-PMA precursor N-acetyl-S-(1,2-dihydro-2-hydroxyphenyl)-l-cysteine, a crucial step of the new analytical method used, which indeed reduced the variability of the results by means of an improved standardization of this critical preanalytical factor. A weaker correlation was found between exposure to benzene and t,t-MA, possibly explained by the fact that the latter is also a metabolite of sorbic acid, a common diet component. In summary, even at such low levels of exposure, urinary metabolites proved to be a useful tool for assessing individual occupational exposure to benzene, S-PMA appearing to be a more specific biomarker than t,t-MA, particularly in non-smokers.


Toxicology Letters | 2009

DNA single-and double-strand breaks by alkaline-and immuno-comet assay in lymphocytes of workers exposed to styrene

Maria Enrica Fracasso; Denise Doria; Mariella Carrieri; Giovanni Battista Bartolucci; Sonia Quintavalle; Edoardo De Rosa

Occupational exposure to styrene was studied in 34 workers employed in the production of fiberglass-reinforced plastic sheets and compared to 29 unexposed healthy controls. We evaluated genotoxic effects induced by occupational styrene exposure in lymphocytes by alkaline version of the comet assay to detect single-strand breaks (SSBs), DNA oxidation products (formamido pyrimidine glycosilase (Fpg)- and endonuclease (Endo III)-sensitive sites) and DNA repair kinetics studies, as well as the neutral version of comet assay for DNA double-strand breaks (DSBs). An innovative aspect of this study was the use of immuno-comet assay, a new technique that recognizes DSBs with specific antibody by DAPI/FITC method. The battery of parameters included markers of external and internal exposure. Exposed workers showed significant high levels of SSBs (p<0.0001) and DSBs (p<0.0001) in neutral- and immuno-comet assay. A drastic decrease in DNA repair activity as compared to controls was observed (180 min vs. 35 min). Styrene workplace concentration significantly correlated with alkaline comet parameters (TM, p=0.013; TI, p=0.008), in negative with TL (p=0.022), and with DNA-base oxidation (TM Endo III, p=0.048 and TI Endo III, p=0.028). There was a significant negative correlation between urinary metabolites (MA+PGA) and TM Endo III (p=0.032) and TI Endo III (p=0.017).


International Journal of Hygiene and Environmental Health | 2009

Personal PM10 exposure in asthmatic adults in Padova, Italy: seasonal variability and factors affecting individual concentrations of particulate matter.

Maria Luisa Scapellato; Cristina Canova; Andrea de Simone; Mariella Carrieri; Piero Maestrelli; Lorenzo Simonato; Giovanni Battista Bartolucci

Personal exposure to PM(10) measured in different seasons in a sample of asthmatic subjects living in Padova (Northern Italy) was compared with simultaneously measured outdoor PM(10) concentrations. The specific contribution of ambient PM(10) and other factors to individual exposure was evaluated in one of the areas of Europe with the worst air pollution. Thirty-one asthmatic subjects (21 non-smokers and 10 smokers) carried personal PM(10) monitors for six 24-hr sessions, in different seasons of the year. Concomitant daily 24-hr ambient PM(10) concentrations were measured by air quality monitoring networks. A multivariate analysis was performed to identify factors explaining personal exposure to PM(10), using a random effect model. The analysis on the 31 subjects referred to a total of 155 observations. The mean personal PM(10) exposure was higher (range 79.3-126.1microg/m(3)) than the outdoor concentrations (range 37.3-85.4microg/m(3)) in all seasons; and personal exposures varied less than outdoor PM(10) levels from one season to another. Smokers had significantly higher personal PM(10) concentrations than non-smokers (127.99 vs 78.8microg/m(3); T=-5.70; p<0.001). Moderate correlations emerged between outdoor and personal PM(10) concentrations. The correlation improved after excluding subjects exposed to active or passive smoking (median Pearsons R 0.41 vs 0.26). Considering all the subjects, smoking was the main factor affecting personal exposure, contributing to 41% of the variability. Outdoor PM(10) concentrations (25%), temperature (12%) and season (15%) also contributed to personal PM(10) exposure. Outdoor PM(10) (46%), temperature (20%), season (19%) and time spent indoors (6%) were significantly associated with personal exposure in non-smokers. We concluded that it is crucial to perform personal monitoring and to evaluate the complexity of factors that contribute to individual PM exposure. While tobacco smoke was the primary source of PM(10) in all subjects, the contribution of ambient components was particularly relevant for the personal exposure levels of our non-smokers living in a highly-polluted environment.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2002

Tobacco-smoke exposure indicators and urinary mutagenicity.

Sofia Pavanello; Paola Simioli; Mariella Carrieri; Pasquale Gregorio; Erminio Clonfero

In this study, the correlation of indicators of external (i.e. mean daily intake of condensate, nicotine, tobacco and tobacco proteins, and daily number of cigarettes smoked) and of internal tobacco-smoke exposure (i.e. urinary 1-pyrenol, nicotine and its metabolites and trans,trans-muconic acid) with urinary mutagenicity, detected on YG1024 Salmonella typhimurium strain with S9, were examined in 118 smokers. An increase in urinary mutagenicity was clearly significantly correlated with each external and internal indicators of exposure to tobacco smoke (correlation coefficient (r) ranging between 0.22 and 0.54, P<0.01), with a greater extent in the case of indicators of internal dose. In multiple regression analysis, among the indicators of external exposure, daily tobacco intake was the only variable significantly associated with urinary mutagenicity (t=2.47, P=0.015, with partial contribution to r(2)=5.15%). Instead, when all indicators of exposure (external and internal) were considered in the analysis, the influence of urinary 1-pyrenol on urinary mutagenicity was predominant, followed by those of urinary trans,trans-muconic acid and nicotine plus metabolites (t=4.63, 2.73 and 2.08, P<0.001, P=0.002 and 0.04, with partial contribution to r(2)=17.0, 6.66 and 3.96%, respectively), with no influence at all of external tobacco-smoke exposure indicators. In conclusion, our results show that indicators of internal dose are better correlated with formation of mutagens in urine of smokers. Among these, the best indicator was urinary 1-pyrenol and this result designates the combustion processes of tobacco as the determining step for the formation of urinary mutagens. However, as these biomarkers cannot be analysed the amount of daily tobacco intake represent the best valuable index of external (presumptive) exposure to tobacco-smoke genotoxins.


Journal of Environmental Monitoring | 2011

Biomarkers of internal dose for the assessment of environmental exposure to benzene

Piero Lovreglio; Maria Nicolà D'Errico; Silvia Fustinoni; Ignazio Drago; Anna Barbieri; Laura Sabatini; Mariella Carrieri; Pietro Apostoli; Leonardo Soleo

The urinary excretion of t,t-muconic acid (t,t-MA), S-phenylmercapturic acid (SPMA) and urinary benzene and the influence of a smoking habit and of exposure to urban traffic on the urinary excretion of these biomarkers were investigated in 137 male adults from the general population. All subjects were not occupationally exposed to benzene and resident in two cities in Puglia (Southern-Italy). Environmental exposure to benzene was measured using passive personal samplers. The biomarkers t,t-MA, SPMA and urinary benzene were determined in urine samples collected from each subject at the end of the environmental sampling. The percentage of cases above the limit of detection was higher for SPMA and urinary benzene in smokers than in non-smokers, and for airborne benzene and urinary benzene in subjects exposed to urban traffic. Airborne benzene was correlated with the time spent in urban traffic during the environmental sampling. Among the biomarkers, urinary benzene was found to be correlated with airborne benzene only in non-smokers, and with the time spent in urban traffic, both in smokers and non-smokers considered together, and in non-smokers only. Finally, multiple regression analysis showed that the urinary excretion of all the biomarkers was dependent on the number of cigarettes smoked per day and, for urinary benzene, also on the time spent in urban traffic. In conclusion, urinary benzene seems to be a more valid biomarker than t,t-MA and SPMA to assess environmental exposure to extremely low concentrations of benzene. Cigarette smoking prevailed over traffic exhaust fumes in determining the internal dose of benzene.


Toxicology Letters | 2012

Influence of glutathione S-transferases polymorphisms on biological monitoring of exposure to low doses of benzene

Mariella Carrieri; Giovanni Battista Bartolucci; Maria Luisa Scapellato; Giovanna Spatari; Daniela Sapienza; Leonardo Soleo; Piero Lovreglio; Giovanna Tranfo; Maurizio Manno; Andrea Trevisan

The environmental and biological monitoring of benzene exposure is crucial to prevent the toxic effects of this solvent in workers. The degree of correlation, however, between the two and of different biomarkers among them varies, particularly at low levels of exposure, depending on various factors, including variability in metabolizing enzymes and smoking habits. To investigate these further, a cohort of 28 petrochemical workers (6 smokers and 22 non smokers) was monitored throughout ten consecutive days, on two occasions, two years apart, by collecting in total 173 environmental and biological samples. The airborne benzene levels, the urinary t,t-muconic acid (t,t-MA) and S-phenylmercapturic acid (S-PMA) concentrations, and the glutathione S-transferases (GST) M1 and T1 genotypes were measured. S-PMA was the only metabolite statistically correlated with airborne benzene levels (r=0.447, P<0.0001), particularly in non smokers (r=0.667, P<0.0001), the smoking habit being the only variable influencing metabolite excretion. Finally, a reduced S-PMA excretion was found to be associated with the GSTT1, but not the GSTM1, null genotype. In conclusion, the results show that S-PMA, but not t,t-MA, is able to monitor exposure to low benzene concentrations and confirm that the GSTT1 null genotype has a significant influence on metabolite excretion. The influence of the GSTT1 null genotype, however, was low, even when studying each subject with several urine samples.


Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2014

Evaluation of chromosome aberration and micronucleus frequencies in blood lymphocytes of workers exposed to low concentrations of benzene.

Piero Lovreglio; Francesca Maffei; Mariella Carrieri; Maria Nicolà D’Errico; Ignazio Drago; Patrizia Hrelia; Giovanni Battista Bartolucci; Leonardo Soleo

The frequency of chromosome aberrations (CA) and micronuclei (MN) was investigated in the peripheral lymphocytes of workers occupationally exposed to low or very low concentrations of benzene. The study included 43 exposed workers (all males), namely 19 fuel-tanker drivers and 24 filling-station attendants, and 31 male subjects with no occupational exposure to the toxicant (controls). Benzene exposure was verified by means of environmental monitoring with passive personal samplers (Radiello(®)), and through biological monitoring, i.e. by measurement of urinary trans,trans-muconic acid, S-phenylmercapturic acid and benzene. The frequency of CA and MN in peripheral lymphocytes was determined according to standard procedures. Exposure to benzene was found to be significantly higher for fuel-tanker drivers (median 246.6 μg/m(3)) than for filling-station attendants (median 19.9 μg/m(3)). Both groups had significantly higher exposure than controls (median 4.3 μg/m(3)). No increased frequency of CA and MN was observed in either fuel-tanker drivers or filling-station attendants compared with controls. In all subjects examined as a single group, the frequency of MN was significantly dependent on age. Only in the fuel-tanker drivers was the frequency of MN found to depend not only on age, but also on exposure to benzene. In conclusion, the frequency of MN, but not of CA, could be influenced by exposure to benzene concentrations of up to one order of magnitude lower than the threshold limit value (time-weighted average).


Occupational and Environmental Medicine | 2013

Multicentre study for the evaluation of mutagenic/carcinogenic risk in nurses exposed to antineoplastic drugs: assessment of DNA damage

Annamaria Buschini; Milena Villarini; Donatella Feretti; Francesca Mussi; Luca Dominici; Ilaria Zerbini; Massimo Moretti; Elisabetta Ceretti; Roberta Bonfiglioli; Mariella Carrieri; Umberto Gelatti; Carlo Rossi; Silvano Monarca; Paola Poli

Objectives People who handle antineoplastic drugs, many of which classified as human carcinogens by International Agency for Research on Cancer, are exposed to low doses in comparison with patients; however, the long duration of exposure could lead to health effects. The aim of this work was to evaluate DNA damage in white blood cells from 63 nurses who handle antineoplastic drugs in five Italian hospitals and 74 control participants, using different versions of the Comet assay. Methods Primary DNA damage was assessed by using the alkaline version of the assay on leucocytes, whereas to detect DNA oxidative damage and cryptic lesions specifically, the Comet/ENDO III assay and the Comet/araC assay were performed on leucocytes and lymphocytes, respectively. Results In the present study, no significant DNA damage was correlated with the work shift. The exposed population did not differ significantly from the reference group with respect to DNA primary and oxidative damage in leucocytes. Strikingly, in isolated lymphocytes treated with araC, lower data dispersion as well as a significantly lower mean value for the percentage of DNA in the comet tail was observed in exposed participants as compared with the control group (p<0.05), suggesting a potential chronic exposure to crosslinking antineoplastic drugs. Conclusions Although stringent rules were adopted at national and international levels to prevent occupational exposure to antineoplastic drugs, data reported in this study support the idea that a more efficient survey on long-lasting exposures at very low concentrations is needed.


Toxicology Letters | 2010

In vivo CYP2E1 phenotyping as a new potential biomarker of occupational and experimental exposure to benzene.

P. Piccoli; Mariella Carrieri; L. Padovano; M. Di Mare; Giovanni Battista Bartolucci; Maria Enrica Fracasso; José Salvador Lepera; Maurizio Manno

Assessing CYP2E1 phenotype in vivo may be important to predict individual susceptibility to those chemicals, including benzene, which are metabolically activated by this isoenzyme. Chlorzoxazone (CHZ), a specific CYP2E1 substrate, is readily hydroxylated to 6-OH-chlorzoxazone (6-OH-CHZ) by liver CYP2E1 and the metabolic ratio 6-OH-CHZ/CHZ in serum (MR) is a specific and sensitive biomarker of CYP2E1 activity in vivo in humans. We used this MR as a potential biomarker of effect in benzene-treated rats and, also, in humans occupationally exposed to low levels of benzene. Male Sprague-Dawley rats (375-400g b.w.) were treated i.p. for 3 days with either a 0.5ml solution of benzene (5mmol/kg b.w.) in corn oil, or 0.5ml corn oil alone. Twenty-four hours after the last injection, a polyethylene glycol (PEG) solution of CHZ (20mg/kg b.w.) was injected i.p. in both treated and control animals. After 2, 5, 10, 15, 20, 30, 45, 60, 90, 120, 180, and 240min from injection, 0.2ml blood was taken from the tip tail and stored at -20 degrees C until analysis. A modified reverse phase HPLC method using a 5microm Ultrasphere C18 column equipped with a direct-connection ODS guard column, was used to measure CHZ and its metabolite 6-OH-CHZ in serum. No statistically significant difference in the MR was observed, at any sampling time, between benzene-treated and control rats. The concentration-versus-time area under the curve (AUC), however, was lower (p<0.05, Mann-Whitney test), whereas the systemic clearance was higher (p<0.05) in treated than in control rats. Eleven petrochemical workers occupationally exposed to low levels of airborne benzene (mean+/-SD, 25.0+/-24.4microg/m(3)) and 13 non-exposed controls from the same factory (mean+/-SD, 6.7+/-4.0microg/m(3)) signed an informed consent form and were administered 500mg CHZ p.o. Two hours later a venous blood sample was taken for CHZ and 6-OH-CHZ measurements. Despite exposed subjects showed significantly higher levels of t,t-MA and S-PMA, two biomarkers of exposure to benzene, than non-exposed workers, no difference in the MR mean values+/-SD was found between exposed (0.59+/-0.29) and non-exposed (0.57+/-0.23) subjects. So, benzene was found to modify CHZ disposition, but not CYP2E1 phenotype in benzene-treated rats, nor in workers exposed to benzene, probably due to the levels of exposure being too low.

Collaboration


Dive into the Mariella Carrieri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurizio Manno

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge