Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mariella Tegoni is active.

Publication


Featured researches published by Mariella Tegoni.


Nature Structural & Molecular Biology | 2000

A novel type of catalytic copper cluster in nitrous oxide reductase

Kieron Brown; Mariella Tegoni; Miguel Prudêncio; Alice S. Pereira; Stéphane Besson; José J. G. Moura; Isabel Moura; Christian Cambillau

Nitrous oxide (N2O) is a greenhouse gas, the third most significant contributor to global warming. As a key process for N2O elimination from the biosphere, N2O reductases catalyze the two-electron reduction of N2O to N2. These 2 × 65 kDa copper enzymes are thought to contain a CuA electron entry site, similar to that of cytochrome c oxidase, and a CuZ catalytic center. The copper anomalous signal was used to solve the crystal structure of N2O reductase from Pseudomonas nautica by multiwavelength anomalous dispersion, to a resolution of 2.4 Å. The structure reveals that the CuZ center belongs to a new type of metal cluster, in which four copper ions are liganded by seven histidine residues. N2O binds to this center via a single copper ion. The remaining copper ions might act as an electron reservoir, assuring a fast electron transfer and avoiding the formation of dead-end products.


Biochemistry | 2000

Camelid Heavy-Chain Variable Domains Provide Efficient Combining Sites to Haptens †

Silvia Spinelli; Leon G. J. Frenken; Pim Hermans; Theo Verrips; Kieron Brown; Mariella Tegoni; Christian Cambillau

Camelids can produce antibodies devoid of light chains and CH1 domains (Hamers-Casterman, C. et al. (1993) Nature 363, 446-448). Camelid heavy-chain variable domains (VHH) have high affinities for protein antigens and the structures of two of these complexes have been determined (Desmyter, A. et al. (1996) Nature Struc. Biol. 3, 803-811; Decanniere, K. et al. (1999) Structure 7, 361-370). However, the small size of these VHHs and their monomeric nature bring into question their capacity to bind haptens. Here, we have successfully raised llama antibodies against the hapten azo-dye Reactive Red (RR6) and determined the crystal structure of the complex between a dimer of this hapten and a VHH fragment. The surface of interaction between the VHH and the dimeric hapten is large, with an area of ca. 300 A(2); this correlates well with the low-dissociation constant of 22 nM measured for the monomer. The VHH fragment provides an efficient combining site to the RR6, using its three CDR loops. In particular, CDR1 provides a strong interaction to the hapten through two histidine residues bound to its copper atoms. VHH fragments might, therefore, prove to be valuable tools for selecting, removing, or capturing haptens. They are likely to play a role in biotechnology extending beyond protein recognition alone.


Journal of Biological Chemistry | 2000

Revisiting the catalytic CuZ cluster of nitrous oxide (N2O) reductase. Evidence of a bridging inorganic sulfur.

Kieron Brown; Kristina Djinovic-Carugo; Tuomas Haltia; Inês Cabrito; Matti Saraste; José J. G. Moura; Isabel Moura; Mariella Tegoni; Christian Cambillau

Nitrous-oxide reductases (N2OR) catalyze the two-electron reduction of N2O to N2. The crystal structure of N2ORs from Pseudomonas nautica(Pn) and Paracoccus denitrificans (Pd) were solved at resolutions of 2.4 and 1.6 Å, respectively. The Pn N2OR structure revealed that the catalytic CuZ center belongs to a new type of metal cluster in which four copper ions are liganded by seven histidine residues. A bridging oxygen moiety and two other hydroxide ligands were proposed to complete the ligation scheme (Brown, K., Tegoni, M., Prudencio, M., Pereira, A. S., Besson, S., Moura, J. J. G., Moura, I., and Cambillau, C. (2000) Nat. Struct. Biol.7, 191–195). However, in the CuZ cluster, inorganic sulfur chemical determination and the high resolution structure of Pd N2OR identified a bridging inorganic sulfur instead of an oxygen. This result reconciles the novel CuZ cluster with the hitherto puzzling spectroscopic data.


Biochemical Journal | 2003

Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 A resolution.

Tuomas Haltia; Kieron Brown; Mariella Tegoni; Christian Cambillau; Matti Saraste; Kimmo Mattila; Kristina Djinovic-Carugo

N2O is generated by denitrifying bacteria as a product of NO reduction. In denitrification, N2O is metabolized further by the enzyme N2O reductase (N2OR), a multicopper protein which converts N2O into dinitrogen and water. The structure of N2OR remained unknown until the recent elucidation of the structure of the enzyme isolated from Pseudomonas nautica. In the present paper, we report the crystal structure of a blue form of the enzyme that was purified under aerobic conditions from Paracoccus denitrificans. N2OR is a head-to-tail homodimer stabilized by a multitude of interactions including two calcium sites located at the intermonomeric surface. Each monomer is composed of two domains: a C-terminal cupredoxin domain that carries the dinuclear electron entry site known as Cu(A), and an N-terminal seven-bladed beta-propeller domain which hosts the active-site centre Cu(Z). The electrons are transferred from Cu(A) to Cu(Z) across the subunit interface. Cu(Z) is a tetranuclear copper cluster in which the four copper ions (Cu1 to Cu4) are ligated by seven histidine imidazoles, a hydroxyl or water oxygen and a bridging inorganic sulphide. A bound chloride ion near the Cu(Z) active site shares one of the ligand imidazoles of Cu1. This arrangement probably influences the redox potential of Cu1 so that this copper is stabilized in the cupric state. The treatment of N2OR with H2O2 or cyanide causes the disappearance of the optical band at 640 nm, attributed to the Cu(Z) centre. The crystal structure of the enzyme soaked with H2O2 or cyanide suggests that an average of one copper of the Cu(Z) cluster has been lost. The lowest occupancy is observed for Cu3 and Cu4. A docking experiment suggests that N(2)O binds between Cu1 and Cu4 so that the oxygen of N2O replaces the oxygen ligand of Cu4. Certain ligand imidazoles of Cu1 and Cu2, as well as of Cu4, are located at the dimer interface. Particularly those of Cu2 and Cu4 are parts of a bonding network which couples these coppers to the Cu(A) centre in the neighbouring monomer. This structure may provide an efficient electron transfer path for reduction of the bound N2O.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Moth chemosensory protein exhibits drastic conformational changes and cooperativity on ligand binding.

Valérie Campanacci; Audrey Lartigue; B. Martin Hallberg; T. Alwyn Jones; Marie-Thérèse Giudici-Orticoni; Mariella Tegoni; Christian Cambillau

Chemosensory proteins (CSPs) have been proposed to transport hydrophobic chemicals from air to olfactory or taste receptors. They have been isolated from several sensory organs of a wide range of insect species. The x-ray structure of CSPMbraA6, a 112-aa antennal protein from the moth Mamestra brassicae (Mbra), was shown to exhibit a novel type of α-helical fold. We have performed a structural and binding study of CSPMbraA6 to get some insights into its possible molecular function. Tryptophan fluorescence quenching demonstrates the ability of CSPMbraA6 to bind several types of semio-chemicals or surrogate ligands with μM Kd. Its crystal structure in complex with one of these compounds, 12-bromo-dodecanol, reveals extensive conformational changes on binding, resulting in the formation of a large cavity filled by three ligand molecules. Furthermore, binding cooperativity was demonstrated for some ligands, suggesting a stepwise binding. The peculiar rearrangement of CSPMbraA6 conformation and the cooperativity phenomenon might trigger the recognition of chemicals by receptors and induce subsequent signal transduction.


Journal of Biological Chemistry | 2006

Modular Structure of the Receptor Binding Proteins of Lactococcus lactis Phages THE RBP STRUCTURE OF THE TEMPERATE PHAGE TP901-1

Silvia Spinelli; Valérie Campanacci; Stéphanie Blangy; Sylvain Moineau; Mariella Tegoni; Christian Cambillau

Lactococcus lactis is a Gram-positive bacterium widely used by the dairy industry. Several industrial L. lactis strains are sensitive to various distinct bacteriophages. Most of them belong to the Siphoviridae family and comprise several species, among which the 936 and P335 are prominent. Members of these two phage species recognize their hosts through the interaction of their receptor-binding protein (RBP) with external cell wall saccharidices of the host, the “receptors.” We report here the 1.65 Å resolution crystal structure of the RBP from phage TP901-1, a member of the P335 species. This RBP of 163 amino acids is a homotrimer comprising three domains: a helical N terminus, an interlaced β-prism, and a β-barrel, the head domain (residues 64-163), which binds a glycerol molecule. Fluorescence quenching experiments indicated that the RBP exhibits high affinity for glycerol, muramyl-dipeptide, and other saccharides in solution. The structural comparison of this RBP with that of lactococcal phage p2 RBP, a member of the 936 species (Spinelli, S., Desmyter, A., Verrips, C. T., de Haard, J. W., Moineau, S., and Cambillau, C. (2006) Nat. Struct. Mol. Biol. 13, 85-89) suggests a large extent of modularity in RBPs of lactococcal phages.


Journal of Bacteriology | 2006

Receptor-Binding Protein of Lactococcus lactis Phages: Identification and Characterization of the Saccharide Receptor-Binding Site

Denise M. Tremblay; Mariella Tegoni; Silvia Spinelli; Valérie Campanacci; Stéphanie Blangy; Céline Huyghe; Aline Desmyter; Steve Labrie; Sylvain Moineau; Christian Cambillau

Phage p2, a member of the lactococcal 936 phage species, infects Lactococcus lactis strains by binding initially to specific carbohydrate receptors using its receptor-binding protein (RBP). The structures of p2 RBP, a homotrimeric protein composed of three domains, and of its complex with a neutralizing llama VH domain (VHH5) have been determined (S. Spinelli, A. Desmyter, C. T. Verrips, H. J. de Haard, S. Moineau, and C. Cambillau, Nat. Struct. Mol. Biol. 13:85-89, 2006). Here, we show that VHH5 was able to neutralize 12 of 50 lactococcal phages belonging to the 936 species. Moreover, escape phage mutants no longer neutralized by VHH5 were isolated from 11 of these phages. All of the mutations (but one) cluster in the RBP/VHH5 interaction surface that delineates the receptor-binding area. A glycerol molecule, observed in the 1.7-A resolution structure of RBP, was found to bind tightly (Kd= 0.26 microM) in a crevice located in this area. Other saccharides bind RBP with comparable high affinity. These data prove the saccharidic nature of the bacterial receptor recognized by phage p2 and identify the position of its binding site in the RBP head domain.


Insect Biochemistry and Molecular Biology | 2012

Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules.

Silvia Spinelli; Amandine Lagarde; Immacolata Iovinella; Pierre Legrand; Mariella Tegoni; Paolo Pelosi; Christian Cambillau

Apis mellifera (Amel) relies on its olfactory system to detect and identify new-sources of floral food. The Odorant-Binding Proteins (OBPs) are the first proteins involved in odorant recognition and interaction, before activation of the olfactory receptors. The Amel genome possess a set of 21 OBPs, much fewer compared to the 60-70 OBPs found in Diptera genomes. We have undertaken a structural proteomics study of Amel OBPs, alone or in complex with odorant or model compounds. We report here the first 3D structure of a member of the C-minus class OBPs, AmelOBP14, characterized by only two disulfide bridges of the three typical of classical OBPs. We show that AmelOBP14 possesses a core of 6 α-helices comparable to that of classical OBPs, and an extra exposed C-terminal helix. Its binding site is located within this core and is completely closed. Fluorescent experiments using 1-NPN displacement demonstrate that AmelOBP14 is able to bind several compounds with sub micromolar dissociation constants, among which citralva and eugenol exhibit the highest affinities. We have determined the structures of AmelOBP14 in complex with 1-NPN, eugenol and citralva, explaining their strong binding. Finally, by introducing a double cysteine mutant at positions 44 and 97, we show that a third disulfide bridge was formed in the same position as in classical OBPs without disturbing the fold of AmelOBP14.


Journal of Biological Chemistry | 2008

A Topological Model of the Baseplate of Lactococcal Phage Tuc2009

Giuliano Sciara; Stéphanie Blangy; Marina I. Siponen; Stephen Mc Grath; Douwe van Sinderen; Mariella Tegoni; Christian Cambillau; Valérie Campanacci

Phages infecting Lactococcus lactis, a Gram-positive bacterium, are a recurrent problem in the dairy industry. Despite their economical importance, the knowledge on these phages, belonging mostly to Siphoviridae, lags behind that accumulated for members of Myoviridae. The three-dimensional structures of the receptor-binding proteins (RBP) of three lactococcal phages have been determined recently, illustrating their modular assembly and assigning the nature of their bacterial receptor. These RBPs are attached to the baseplate, a large phage organelle, located at the tip of the tail. Tuc2009 baseplate is formed by the products of 6 open read frames, including the RBP. Because phage binding to its receptor induces DNA release, it has been postulated that the baseplate might be the trigger for DNA injection. We embarked on a structural study of the lactococcal phages baseplate, ultimately to gain insight into the triggering mechanism following receptor binding. Structural features of the Tuc2009 baseplate were established using size exclusion chromatography coupled to on-line UV-visible absorbance, light scattering, and refractive index detection (MALS/UV/RI). Combining the results of this approach with literature data led us to propose a “low resolution” model of Tuc2009 baseplate. This model will serve as a knowledge base to submit relevant complexes to crystallization trials.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The nitrite reductase from Pseudomonas aeruginosa: Essential role of two active-site histidines in the catalytic and structural properties

Francesca Cutruzzolà; Kieron Brown; Emma K. Wilson; Andrea Bellelli; Marzia Arese; Mariella Tegoni; Christian Cambillau; Maurizio Brunori

Cd1 nitrite reductase catalyzes the conversion of nitrite to NO in denitrifying bacteria. Reduction of the substrate occurs at the d1-heme site, which faces on the distal side some residues thought to be essential for substrate binding and catalysis. We report the results obtained by mutating to Ala the two invariant active site histidines, His-327 and His-369, of the enzyme from Pseudomonas aeruginosa. Both mutants have lost nitrite reductase activity but maintain the ability to reduce O2 to water. Nitrite reductase activity is impaired because of the accumulation of a catalytically inactive form, possibly because the productive displacement of NO from the ferric d1-heme iron is impaired. Moreover, the two distal His play different roles in catalysis; His-369 is absolutely essential for the stability of the Michaelis complex. The structures of both mutants show (i) the new side chain in the active site, (ii) a loss of density of Tyr-10, which slipped away with the N-terminal arm, and (iii) a large topological change in the whole c-heme domain, which is displaced 20 Å from the position occupied in the wild-type enzyme. We conclude that the two invariant His play a crucial role in the activity and the structural organization of cd1 nitrite reductase from P. aeruginosa.

Collaboration


Dive into the Mariella Tegoni's collaboration.

Top Co-Authors

Avatar

Christian Cambillau

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Silvia Spinelli

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Valérie Campanacci

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Kieron Brown

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Lartigue

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Florence Vincent

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge