Marielle van Gijn
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marielle van Gijn.
Nature | 2005
Johan H. van Es; Marielle van Gijn; Orbicia Riccio; Maaike van den Born; Marc Vooijs; Harry Begthel; Miranda Cozijnsen; Sylvie Robine; Doug J. Winton; Freddy Radtke; Hans Clevers
The self-renewing epithelium of the small intestine is ordered into stem/progenitor crypt compartments and differentiated villus compartments. Recent evidence indicates that the Wnt cascade is the dominant force in controlling cell fate along the crypt–villus axis. Here we show a rapid, massive conversion of proliferative crypt cells into post-mitotic goblet cells after conditional removal of the common Notch pathway transcription factor CSL/RBP-J (ref. 2). We obtained a similar phenotype by blocking the Notch cascade with a γ-secretase inhibitor. The inhibitor also induced goblet cell differentiation in adenomas in mice carrying a mutation of the Apc tumour suppressor gene. Thus, maintenance of undifferentiated, proliferative cells in crypts and adenomas requires the concerted activation of the Notch and Wnt cascades. Our data indicate that γ-secretase inhibitors, developed for Alzheimers disease, might be of therapeutic benefit in colorectal neoplastic disease.
Nature Cell Biology | 2005
Johan H. van Es; Philippe Jay; Alex Gregorieff; Marielle van Gijn; Suzanne Jonkheer; Pantelis Hatzis; Andrea Thiele; Maaike van den Born; Harry Begthel; Thomas Brabletz; Makoto M. Taketo; Hans Clevers
Wnt signalling, which is transduced through β-catenin/TCF4, maintains the undifferentiated state of intestinal crypt progenitor cells. Mutational activation of the pathway initiates the adenomacarcinoma sequence. Whereas all other differentiated epithelial cells migrate from the crypt onto the villus, Paneth cells home towards the source of Wnt signals — that is, the crypt bottom. Here, we show that expression of a Paneth gene programme is critically dependent on TCF4 in embryonic intestine. Moreover, conditional deletion of the Wnt receptor Frizzled-5 abrogates expression of these genes in Paneth cells in the adult intestine. Conversely, adenomas in Apc-mutant mice and colorectal cancers in humans inappropriately express these Paneth-cell genes. These observations imply that Wnt signals in the crypt can separately drive a stem-cell/progenitor gene programme and a Paneth-cell maturation programme. In intestinal cancer, both gene programmes are activated simultaneously.
Cell | 2009
Laurens G. van der Flier; Marielle van Gijn; Pantelis Hatzis; Pekka Kujala; Andrea Haegebarth; Daniel E. Stange; Harry Begthel; Maaike van den Born; Victor Guryev; Irma Oving; Johan H. van Es; Nick Barker; Peter J. Peters; Marc van de Wetering; Hans Clevers
The small intestinal epithelium is the most rapidly self-renewing tissue of mammals. Proliferative cells are confined to crypts, while differentiated cell types predominantly occupy the villi. We recently demonstrated the existence of a long-lived pool of cycling stem cells defined by Lgr5 expression and intermingled with post-mitotic Paneth cells at crypt bottoms. We have now determined a gene signature for these Lgr5 stem cells. One of the genes within this stem cell signature is the Wnt target Achaete scute-like 2 (Ascl2). Transgenic expression of the Ascl2 transcription factor throughout the intestinal epithelium induces crypt hyperplasia and ectopic crypts on villi. Induced deletion of the Ascl2 gene in adult small intestine leads to disappearance of the Lgr5 stem cells within days. The combined results from these gain- and loss-of-function experiments imply that Ascl2 controls intestinal stem cell fate.
EMBO Reports | 2008
Orbicia Riccio; Marielle van Gijn; April C Bezdek; Luca Pellegrinet; Johan H. van Es; Ursula Zimber-Strobl; Lothar J. Strobl; Tasuku Honjo; Hans Clevers; Freddy Radtke
The crucial role of individual Notch receptors and the mechanism by which they maintain intestinal crypt progenitor cells were assessed by using a series of inducible gut‐specific Notch mutant mice. We found that Notch1 and Notch2 receptors function redundantly in the gut, as only simultaneous loss of both receptors results in complete conversion of proliferating crypt progenitors into post‐mitotic goblet cells. This conversion correlates with the loss of Hes1 expression and derepression of the cyclin‐dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2. We also found that the promoter of both CDK inhibitor genes is occupied by the Notch effector Hes1 in wild‐type crypt progenitor cells. Thus, our results indicate that Notch‐mediated Hes1 expression contributes to the maintenance of the proliferative crypt compartment of the small intestine by transcriptionally repressing two CDK inhibitors.
Arthritis & Rheumatism | 2011
Naoko Tanaka; Kazushi Izawa; Megumu Saito; Mio Sakuma; Koichi Oshima; Osamu Ohara; Ryuta Nishikomori; Takeshi Morimoto; Naotomo Kambe; Raphaela Goldbach-Mansky; Ivona Aksentijevich; Geneviève de Saint Basile; Bénédicte Neven; Marielle van Gijn; Joost Frenkel; Juan I. Aróstegui; Jordi Yagüe; Rosa Merino; Mercedes Ibañez; Alessandra Pontillo; Hidetoshi Takada; Tomoyuki Imagawa; Tomoki Kawai; Takahiro Yasumi; Tatsutoshi Nakahata; Toshio Heike
OBJECTIVE Chronic infantile neurologic, cutaneous, articular (CINCA) syndrome, also known as neonatal-onset multisystem inflammatory disease (NOMID), is a dominantly inherited systemic autoinflammatory disease. Although heterozygous germline gain-of-function NLRP3 mutations are a known cause of this disease, conventional genetic analyses fail to detect disease-causing mutations in ∼40% of patients. Since somatic NLRP3 mosaicism has been detected in several mutation-negative NOMID/CINCA syndrome patients, we undertook this study to determine the precise contribution of somatic NLRP3 mosaicism to the etiology of NOMID/CINCA syndrome. METHODS An international case-control study was performed to detect somatic NLRP3 mosaicism in NOMID/CINCA syndrome patients who had shown no mutation during conventional sequencing. Subcloning and sequencing of NLRP3 was performed in these mutation-negative NOMID/CINCA syndrome patients and their healthy relatives. Clinical features were analyzed to identify potential genotype-phenotype associations. RESULTS Somatic NLRP3 mosaicism was identified in 18 of the 26 patients (69.2%). Estimates of the level of mosaicism ranged from 4.2% to 35.8% (mean ± SD 12.1 ± 7.9%). Mosaicism was not detected in any of the 19 healthy relatives (18 of 26 patients versus 0 of 19 relatives; P < 0.0001). In vitro functional assays indicated that the detected somatic NLRP3 mutations had disease-causing functional effects. No differences in NLRP3 mosaicism were detected between different cell lineages. Among nondescript clinical features, a lower incidence of mental retardation was noted in patients with somatic mosaicism. Genotype-matched comparison confirmed that patients with somatic NLRP3 mosaicism presented with milder neurologic symptoms. CONCLUSION Somatic NLRP3 mutations were identified in 69.2% of patients with mutation-negative NOMID/CINCA syndrome. This indicates that somatic NLRP3 mosaicism is a major cause of NOMID/CINCA syndrome.
The Journal of Allergy and Clinical Immunology | 2012
Joris M. van Montfrans; Andy I. M. Hoepelman; Sigrid A. Otto; Marielle van Gijn; Lisette van de Corput; Roel A. de Weger; Linda Monaco-Shawver; Pinaki P. Banerjee; Elisabeth A. M. Sanders; Cornelia M. Jol-van der Zijde; Michael R. Betts; Jordan S. Orange; Andries C. Bloem; Kiki Tesselaar
BACKGROUND CD27 is a lymphocyte costimulatory molecule that regulates T-cell, natural killer (NK) cell, B-cell, and plasma cell function, survival, and differentiation. On the basis of its function and expression pattern, we considered CD27 a candidate gene in patients with hypogammaglobulinemia. OBJECTIVE We sought to describe the clinical and immunologic phenotypes of patients with genetic CD27 deficiency. METHODS A molecular and extended immunologic analysis was performed on 2 patients lacking CD27 expression. RESULTS We identified 2 brothers with a homozygous mutation in CD27 leading to absence of CD27 expression. Both patients had persistent symptomatic EBV viremia. The index patient was hypogammaglobulinemic, and immunoglobulin replacement therapy was initiated. His brother had aplastic anemia in the course of his EBV infection and died from fulminant gram-positive bacterial sepsis. Immunologically, lack of CD27 expression was associated with impaired T cell-dependent B-cell responses and T-cell dysfunction. CONCLUSION Our findings identify a role for CD27 in human subjects and suggest that this deficiency can explain particular cases of persistent symptomatic EBV viremia with hypogammaglobulinemia and impaired T cell-dependent antibody generation.
Human Mutation | 2011
Roland P. Kuiper; Lisenka E.L.M. Vissers; Ramprasath Venkatachalam; Danielle Bodmer; Eveline Hoenselaar; Monique Goossens; Aline Haufe; Eveline J. Kamping; Renée C. Niessen; Frans B. L. Hogervorst; Johan J. P. Gille; Bert Redeker; Carli M. J. Tops; Marielle van Gijn; Ans van den Ouweland; Nils Rahner; Verena Steinke; Philip Kahl; Elke Holinski-Feder; Monika Morak; Matthias Kloor; Susanne Stemmler; Beate Betz; Pierre Hutter; David J. Bunyan; Sapna Syngal; Julie O. Culver; Tracy Graham; Tsun Leung Chan; Iris D. Nagtegaal
Recently, we identified 3′ end deletions in the EPCAM gene as a novel cause of Lynch syndrome. These truncating EPCAM deletions cause allele‐specific epigenetic silencing of the neighboring DNA mismatch repair gene MSH2 in tissues expressing EPCAM. Here we screened a cohort of unexplained Lynch‐like families for the presence of EPCAM deletions. We identified 27 novel independent MSH2‐deficient families from multiple geographical origins with varying deletions all encompassing the 3′ end of EPCAM, but leaving the MSH2 gene intact. Within The Netherlands and Germany, EPCAM deletions appeared to represent at least 2.8% and 1.1% of the confirmed Lynch syndrome families, respectively. MSH2 promoter methylation was observed in epithelial tissues of all deletion carriers tested, thus confirming silencing of MSH2 as the causative defect. In a total of 45 families, 19 different deletions were found, all including the last two exons and the transcription termination signal of EPCAM. All deletions appeared to originate from Alu‐repeat mediated recombination events. In 17 cases regions of microhomology around the breakpoints were found, suggesting nonallelic homologous recombination as the most likely mechanism. We conclude that 3′ end EPCAM deletions are a recurrent cause of Lynch syndrome, which should be implemented in routine Lynch syndrome diagnostics. Hum Mutat 32:1–8, 2011.
The Journal of Allergy and Clinical Immunology | 2014
Isaac J. Nijman; Joris M. van Montfrans; Marlous Hoogstraat; Marianne Boes; Lisette van de Corput; Ellen D. Renner; Patrick van Zon; Stef van Lieshout; Martin Elferink; Mirjam van der Burg; Clementien L. Vermont; Bert van der Zwaag; Esther Janson; Edwin Cuppen; Johannes K. Ploos van Amstel; Marielle van Gijn
BACKGROUND Primary immunodeficiency (PID) disorders are a heterogeneous group of inherited disorders caused by a variety of monogenetic immune defects. Thus far, mutations in more than 170 different genes causing PIDs have been described. A clear genotype-phenotype correlation is often not available, which makes a genetic diagnosis in patients with PIDs complex and laborious. OBJECTIVE We sought to develop a robust, time-effective, and cost-effective diagnostic method to facilitate a genetic diagnosis in any of 170 known PID-related genes by using next-generation sequencing (NGS). METHODS We used both targeted array-based and in-solution enrichment combined with a SOLiD sequencing platform and a bioinformatic pipeline developed in house to analyze genetic changes in the DNA of 41 patients with PIDs with known mutations and 26 patients with undiagnosed PIDs. RESULTS This novel NGS-based method accurately detected point mutations (sensitivity and specificity >99% in covered regions) and exonic deletions (100% sensitivity and specificity). For the 170 genes of interest, the DNA coverage was greater than 20× in 90% to 95%. Nine PID-related genes proved not eligible for evaluation by using this NGS-based method because of inadequate coverage. The NGS method allowed us to make a genetic diagnosis in 4 of 26 patients who lacked a genetic diagnosis despite routine functional and genetic testing. Three of these patients proved to have an atypical presentation of previously described PIDs. CONCLUSION This novel NGS tool facilitates accurate simultaneous detection of mutations in 161 of 170 known PID-related genes. In addition, these analyses will generate more insight into genotype-phenotype correlations for the different PID disorders.
Journal of Biological Chemistry | 2014
Robert van der Burgh; Lotte Nijhuis; Kalliopi Pervolaraki; Ewoud B. Compeer; Lieneke H. Jongeneel; Marielle van Gijn; Paul J. Coffer; Michael P. Murphy; Pier G. Mastroberardino; Joost Frenkel; Marianne Boes
Background: Periodic fever syndromes are caused by deregulation of interleukin-1β release. Results: Defective autophagy leads to accumulation of damaged mitochondria in monocytes. Conclusion: Mitochondrial components in the cytosol cause priming of monocytes for interleukin-1β release. Significance: The molecular mechanism behind deregulated cytokine secretion provides new clues for intervention. Most hereditary periodic fever syndromes are mediated by deregulated IL-1β secretion. The generation of mature IL-1β requires two signals: one that induces synthesis of inflammasome components and substrates and a second that activates inflammasomes. The mechanisms that mediate autoinflammation in mevalonate kinase deficiency, a periodic fever disease characterized by a block in isoprenoid biosynthesis, are poorly understood. In studying the effects of isoprenoid shortage on IL-1 β generation, we identified a new inflammasome activation signal that originates from defects in autophagy. We find that hypersecretion of IL-1β and IL-18 requires reactive oxygen species and is associated with an oxidized redox status of monocytes but not lymphocytes. IL-1β hypersecretion by monocytes involves decreased mitochondrial stability, release of mitochondrial content into the cytosol and attenuated autophagosomal degradation. Defective autophagy, as established by ATG7 knockdown, results in prolonged cytosolic retention of damaged mitochondria and increased IL-1β secretion. Finally, activation of autophagy in healthy but not mevalonate kinase deficiency patient cells reduces IL-1β secretion. Together, these results indicate that defective autophagy can prime monocytes for mitochondria-mediated NLRP3 inflammasome activation, thereby contributing to hypersecretion of IL-1β in mevalonate kinase deficiency.
Annals of the Rheumatic Diseases | 2014
Monique Stoffels; Agata Szperl; Anna Simon; Mihai G. Netea; Theo S. Plantinga; Marcel van Deuren; Sylvia Kamphuis; Helen J. Lachmann; Edwin Cuppen; Wigard P. Kloosterman; Joost Frenkel; Cleo C. van Diemen; Cisca Wijmenga; Marielle van Gijn; Jos W. M. van der Meer
Objectives Autoinflammatory disorders are disorders of the innate immune system. Standard genetic testing provided no correct diagnosis in a female patient from a non-consanguineous family of British descent with a colchicine-responsive autosomal dominant periodic fever syndrome. We aimed to unravel the genetic cause of the symptoms. Methods Whole exome sequencing was used to screen for novel sequence variants, which were validated by direct Sanger sequencing. Ex vivo stimulation with peripheral blood mononuclear cells was performed to study the functional consequences of the mutation. mRNA and cytokine levels were measured by quantitative PCR and ELISA, respectively. Results Whole exome sequencing revealed a novel missense sequence variant, not seen in around 6800 controls, mapping to exon 8 of the MEFV gene (c.1730C>A; p.T577N), co-segregating perfectly with disease in this family. Other mutations at the same amino acid (c.1730C>G; p.T577S and c.1729A>T; p.T577S) were found in a family of Turkish descent, with autosomal dominant inheritance of familial Mediterranean fever (FMF)-like phenotype, and a Dutch patient, respectively. Moreover, a mutation (c.1729A>G; p.T577A) was detected in two Dutch siblings, who had episodes of inflammation of varying severity not resembling FMF. Peripheral blood mononuclear cells from one patient of the index family showed increased basal interleukin 1β mRNA levels and cytokine responses after lipopolysaccharide stimulation. Responses normalised with colchicine treatment. Conclusions Heterozygous mutations at amino acid position 577 of pyrin can induce an autosomal dominant autoinflammatory syndrome. This suggests that T577, located in front of the C-terminal B30.2/SPRY domain, is crucial for pyrin function.