Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marien J.C. Houtman is active.

Publication


Featured researches published by Marien J.C. Houtman.


Journal of the American College of Cardiology | 2010

Late Na Current Inhibition by Ranolazine Reduces Torsades de Pointes in the Chronic Atrioventricular Block Dog Model

Gudrun Antoons; Avram Oros; Jet D.M. Beekman; Markus A. Engelen; Marien J.C. Houtman; Luiz Belardinelli; Milan Stengl; Marc A. Vos

OBJECTIVES This study investigated whether ranolazine reduces dofetilide-induced torsades de pointes (TdP) in a model of long QT syndrome with down-regulated K(+) currents due to hypertrophic remodeling in the dog with chronic atrioventricular block (cAVB). BACKGROUND Ranolazine inhibits the late Na(+) current (I(NaL)) and is effective against arrhythmias in long QT3 syndromes despite its blocking properties of the rapid component of delayed rectifying potassium current. METHODS Ranolazine was administered to cAVB dogs before or after TdP induction with dofetilide and electrophysiological parameters were determined including beat-to-beat variability of repolarization (BVR). In single ventricular myocytes, effects of ranolazine were studied on I(NaL), action potential duration, and dofetilide-induced BVR and early afterdepolarizations. RESULTS After dofetilide, ranolazine reduced the number of TdP episodes from 10 +/- 3 to 3 +/- 1 (p < 0.05) and partially reversed the increase of BVR with no abbreviation of the dofetilide-induced QT prolongation. Likewise, pre-treatment with ranolazine, or using lidocaine as a specific Na(+) channel blocker, attenuated TdP, but failed to prevent dofetilide-induced increases in QT, BVR, and ectopic activity. In cAVB myocytes, ranolazine suppressed dofetilide-induced early afterdepolarizations in 25% of cells at 5 micromol/l, in 75% at 10 micromol/l, and in 100% at 15 micromol/l. At 5 micromol/l, ranolazine blocked 26 +/- 3% of tetrodotoxin-sensitive I(NaL), and 49 +/- 3% at 15 micromol/l. Despite a 54% reduction of I(NaL) amplitude in cAVB compared with control cells, I(NaL) inhibition by 5 micromol/l tetrodotoxin equally shortened relative action potential duration and completely abolished dofetilide-induced early afterdepolarizations. CONCLUSIONS Despite down-regulation of I(NaL) in remodeled cAVB hearts, ranolazine is antiarrhythmic against drug-induced TdP. The antiarrhythmic effects are reflected in concomitant changes of BVR.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Reduction of fibrosis-related arrhythmias by chronic renin-angiotensin-aldosterone system inhibitors in an aged mouse model

Mera Stein; Mohamed Boulaksil; John A. Jansen; Eva Herold; Maartje Noorman; Jaap A. Joles; Toon A.B. van Veen; Marien J.C. Houtman; Markus A. Engelen; Richard N.W. Hauer; Jacques M.T. de Bakker; Harold V.M. van Rijen

Myocardial fibrosis increases arrhythmia vulnerability of the diseased heart. The renin-angiotensin-aldosterone system (RAAS) governs myocardial collagen synthesis. We hypothesized that reducing cardiac fibrosis by chronic RAAS inhibition would result in reduced arrhythmia vulnerability of the senescent mouse heart. Wild-type mice (52 wk old) were treated for 36 wk: 1) untreated control (C); 2) eplerenone (E); 3) losartan (L); and 4) cotreatment with eplerenone and losartan (EL). Ventricular epicardial activation mapping was performed on Langendorff-perfused hearts. Arrhythmia inducibility was tested by one to three premature stimuli and burst pacing. Longitudinal and transverse conduction velocity and dispersion of conduction were determined during pacing at a basic cycle length of 150 ms. Sirius red staining (collagen) was performed. As a result, in the RV of mice in the E, L, and EL groups, transverse conduction velocity was significantly increased and anisotropic ratio was significantly decreased compared with those values of mice in the C group. Anisotropic reentrant arrhythmias were induced in 52% of untreated mice and significantly reduced to 22%, 26%, and 16% in the E, L, and EL groups, respectively. Interstitial fibrosis was significantly decreased in both the RV and LV of all treated groups. Scattered patches of replacement fibrosis were found in 90% of untreated hearts, which were significantly reduced in the E, L, and EL groups. A strong correlation between the abundance of patchy fibrosis and arrhythmia inducibility was found. In conclusion, chronic RAAS inhibition limited aging-related interstitial fibrosis. The lower arrhythmogeneity of treated mice was directly correlated to the reduced amount of patchy fibrosis.


Acta Physiologica | 2010

The mammalian KIR2.x inward rectifier ion channel family: expression pattern and pathophysiology

Tp De Boer; Marien J.C. Houtman; M. Compier; M. A. G. Van Der Heyden

Inward rectifier currents based on KIR2.x subunits are regarded as essential components for establishing a stable and negative resting membrane potential in many excitable cell types. Pharmacological inhibition, null mutation in mice and dominant positive and negative mutations in patients reveal some of the important functions of these channels in their native tissues. Here we review the complex mammalian expression pattern of KIR2.x subunits and relate these to the outcomes of functional inhibition of the resultant channels. Correlations between expression and function in muscle and bone tissue are observed, while we recognize a discrepancy between neuronal expression and function.


Circulation-arrhythmia and Electrophysiology | 2013

Combined Na+/Ca2+ Exchanger and L-Type Calcium Channel Block as a Potential Strategy to Suppress Arrhythmias and Maintain Ventricular Function

Vincent J.A. Bourgonje; Marc A. Vos; Semir Ozdemir; Nicolas Doisne; Károly Acsai; András Varró; Anita Sztojkov-Ivanov; István Zupkó; Erik Rauch; Lars Kattner; Virginie Bito; Marien J.C. Houtman; Roel van der Nagel; Jet D.M. Beekman; Toon A.B. van Veen; Karin R. Sipido; Gudrun Antoons

Background—L-type calcium channel (LTCC) and Na+/Ca2+ exchanger (NCX) have been implicated in repolarization-dependent arrhythmias, but also modulate calcium and contractility. Although LTCC inhibition is negative inotropic, NCX inhibition has the opposite effect. Combined block may, therefore, offer an advantage for hemodynamics and antiarrhythmic efficiency, particularly in diseased hearts. In a model of proarrhythmia, the dog with chronic atrioventricular block, we investigated whether combined inhibition of NCX and LTCC with SEA-0400 is effective against dofetilide-induced torsade de pointes arrhythmias (TdP), while maintaining calcium homeostasis and hemodynamics. Methods and Results—Left ventricular pressure (LVP) and ECG were monitored during infusion of SEA-0400 and verapamil in anesthetized dogs. Different doses were tested against dofetilide-induced TdP in chronic atrioventricular block dogs. In ventricular myocytes, effects of SEA-0400 were tested on action potentials, calcium transients, and early afterdepolarizations. In cardiomyocytes, SEA-0400 (1 &mgr;mol/L) blocked 66±3% of outward NCX, 50±2% of inward NCX, and 33±9% of LTCC current. SEA-0400 had no effect on systolic calcium, but slowed relaxation, despite action potential shortening, and increased diastolic calcium. SEA-0400 stabilized dofetilide-induced lability of repolarization and suppressed early afterdepolarizations. In vivo, SEA-0400 (0.4 and 0.8 mg/kg) had no effect on left ventricular pressure and suppressed dofetilide-induced TdPs dose dependently. Verapamil (0.3 mg/kg) also inhibited TdP, but caused a 15±8% drop of left ventricular pressure. A lower dose of verapamil without effects on left ventricular pressure (0.06 mg/kg) was not antiarrhythmic. Conclusions—In chronic atrioventricular block dogs, SEA-0400 treatment is effective against TdP. Unlike specific inhibition of LTCC, combined NCX and LTCC inhibition has no negative effects on cardiac hemodynamics.


Medical & Biological Engineering & Computing | 2006

Inhibition of Cardiomyocyte Automaticity by Electrotonic Application of Inward Rectifier Current from Kir2.1 Expressing Cells

Teun P. de Boer; Toon A.B. van Veen; Marien J.C. Houtman; John A. Jansen; Shirley C. M. van Amersfoorth; Pieter A. Doevendans; Marc A. Vos; Marcel A.G. van der Heyden

A biological pacemaker might be created by generation of a cellular construct consisting of cardiac cells that display spontaneous membrane depolarization, and that are electrotonically coupled to surrounding myocardial cells by means of gap junctions. Depending on the frequency of the spontaneously beating cells, frequency regulation might be required. We hypothesized that application of Kir2.1 expressing non-cardiac cells, which provide IK1 to spontaneously active neonatal cardiomyocytes (NCMs) by electrotonic coupling in such a cellular construct, would generate an opportunity for pacemaker frequency control. Non-cardiac Kir2.1 expressing cells were co-cultured with spontaneously active rat NCMs. Electrotonic coupling between the two cell types resulted in hyperpolarization of the cardiomyocyte membrane potential and silencing of spontaneous activity. Either blocking of gap-junctional communication by halothane or inhibition of IK1 by BaCl2 restored the original membrane potential and spontaneous activity of the NCMs. Our results demonstrate the power of electrotonic coupling for the application of specific ion currents into an engineered cellular construct such as a biological pacemaker.


Circulation-arrhythmia and Electrophysiology | 2011

Drug-induced torsade de pointes arrhythmias in the chronic AV block dog are perpetuated by focal activity

Mohamed Boulaksil; Jérôme Gm Jungschleger; Gudrun Antoons; Marien J.C. Houtman; Teun P. de Boer; Ronald Wilders; Jet D.M. Beekman; Jos G. Maessen; Ferenc F. van der Hulst; Marcel A.G. van der Heyden; Toon A.B. van Veen; Harold V.M. van Rijen; Jacques M.T. de Bakker; Marc A. Vos

Background— The electrically remodeled canine heart after chronic AV block (CAVB) has a high susceptibility for drug-induced torsade de pointes (TdP) arrhythmias. Although focal mechanisms have been considered for initiation, there is still controversy about whether reentry is the dominant mechanism for perpetuation of TdP. In this animal model with known nonuniform prolongation of repolarization, the mechanism of perpetuation of TdP arrhythmia was explored. Methods and Results— Seventeen TdP-sensitive CAVB and 10 sinus rhythm (SR) dogs were studied. In 6 animals, 66 needle electrodes were evenly distributed transmurally to record 240 unipolar local electrograms simultaneously. Activation times and activation recovery intervals were determined before and during ibutilide-induced TdP. In 12 CAVB and 9 SR dogs, left ventricular (LV) and right ventricular (RV) epicardial electrograms were recorded with a 208-point multiterminal grid electrode allowing conduction velocity (CV) and ventricular effective refractory period (VERP) measurements. Biopsy specimens were processed for connexin43 (Cx43) expression and collagen content. Ventricular myocytes were isolated to determine sodium current (INa) density and cell dimensions. Computer simulations were used to assess the effects of changes therein. In CAVB, VERP and ARI were increased, whereas CV was unaltered in LV. Transversal but not longitudinal CV was increased in RV. INa was reduced by 37% in LV but unaltered in RV. LV and RV cell size were increased, but collagen and Cx43 content remained unchanged. Simulations showed increase in CV of RV as a consequence of increased cell size at normal INa. Ibutilide increased ARI, ERP, and maximal transmural dispersion of ERP (45±25 to 120±65 ms; P<0.05). Twenty-eight of 47 episodes of self-terminating TdP (43±72 beats) were analyzed. The majority (>90%) of beats were focal; reentry was observed only occasionally. Conclusions— Focal activity is the dominant mechanism involved in perpetuation of ibutilide-induced TdP in CAVB dogs based on detailed 3D mapping. This conclusion is in line with unaltered conduction and documented increase in VERP.


Cardiovascular Research | 2013

Efficient and specific cardiac IK1 inhibition by a new pentamidine analogue

Hiroki Takanari; Lukas Nalos; Anna Stary-Weinzinger; Kathy C. G. de Git; Rosanne Varkevisser; Tobias Linder; Marien J.C. Houtman; Maaike Peschar; Teun P. de Boer; Richard R. Tidwell; Martin B. Rook; Marc A. Vos; Marcel A.G. van der Heyden

AIMS In excitable cells, KIR2.x ion-channel-carried inward rectifier current (IK₁) is thought to set the negative and stable resting membrane potential, and contributes to action potential repolarization. Loss- or gain-of-function mutations correlate with cardiac arrhythmias and pathological remodelling affects normal KIR2.x protein levels. No specific IK1 inhibitor is currently available for in vivo use, which severely hampers studies on the precise role of IK1 in normal cardiac physiology and pathophysiology. The diamine antiprotozoal drug pentamidine (P) acutely inhibits IK₁ by plugging the cytoplasmic pore region of the channel. We aim to develop more efficient and specific IK₁ inhibitors based on the P structure. METHODS AND RESULTS We analysed seven pentamidine analogues (PA-1 to PA-7) for IK₁ blocking potency at 200 nM using inside-out patches from KIR2.1 expressing HEK-293 cells. PA-6 showed the highest potency and was tested further. PA-6 blocked KIR2.x currents of human and mouse with low IC₅₀ values (12-15 nM). Modelling indicated that PA-6 had less electrostatic but more lipophilic interactions with the cytoplasmic channel pore than P, resulting in a higher channel affinity for PA-6 (ΔG -44.1 kJ/Mol) than for P (ΔG -31.7 kJ/Mol). The involvement of acidic amino acid residues E224 and E299 in drug-channel interaction was confirmed experimentally. PA-6 did not affect INav1.5, ICa-L, IKv4.3, IKv11.1, and IKv7.1/minK currents at 200 nM. PA-6 inhibited the inward (50 nM 40%; 100 nM 59%; 200 nM 77%) and outward (50 nM 40%; 100 nM 76%; 200 nM 100%) components of IK₁ in isolated canine adult-ventricular cardiomyocytes (CMs). PA-6 prolonged action potential duration of CMs by 8 (n = 9), 26 (n = 5), and 34% (n = 11) at 50, 100, and 200 nM, respectively. Unlike P, PA-6 had no effect on KIR2.1 channel expression at concentrations from 0.1 to 3 μM. However, PA-6 at 10 μM increased KIR2.1 expression levels. Also, PA-6 did not affect the maturation of hERG, except when applied at 10 μM. CONCLUSION PA-6 has higher efficiency and specificity to KIR2.x-mediated current than P, lengthens action potential duration, and does not affect channel trafficking at concentrations relevant for complete IK₁ block.


European Journal of Pharmacology | 2011

Inhibition of lysosomal degradation rescues pentamidine-mediated decreases of KIR2.1 ion channel expression but not that of Kv11.1

Lukas Nalos; Teun P. de Boer; Marien J.C. Houtman; Martin B. Rook; Marc A. Vos; Marcel A.G. van der Heyden

The antiprotozoal drug pentamidine inhibits two types of cardiac rectifier potassium currents, which can precipitate life-threatening arrhythmias. Here, we use pentamidine as a tool to investigate whether a single drug affects trafficking of two structurally different potassium channels by identical or different mechanisms, and whether the adverse drug effect can be suppressed in a channel specific fashion. Whole cell patch clamp, Western blot, real time PCR, and confocal laser scanning microscopy were used to determine potassium current density, ion channel protein levels, mRNA expression levels, and subcellular localization, respectively. We demonstrate that pentamidine inhibits delayed (I(Kr)) and inward (I(K1)) rectifier currents in cultured adult canine cardiomyocytes. In HEK293 cells, pentamidine inhibits functional K(v)11.1 channels, responsible for I(Kr), by interfering at the level of full glycosylation, yielding less mature form of K(v)11.1 at the plasma membrane. In contrast, total K(IR)2.1 expression levels, underlying I(K1), are strongly decreased, which cannot be explained from mRNA expression levels. No changes in molecular size of K(IR)2.1 protein were observed, excluding interference in overt glycosylation. Remaining K(IR)2.1 protein is mainly expressed at the plasma membrane. Inhibition of lysosomal protein degradation is able to partially rescue K(IR)2.1 levels, but not those of K(v)11.1. We conclude that 1) a single drug can interfere in cardiac potassium channel trafficking in a subtype specific mode and 2) adverse drug effects can be corrected in a channel specific manner.


Frontiers in Physiology | 2012

Experimental Mapping of the Canine KCNJ2 and KCNJ12 Gene Structures and Functional Analysis of the Canine KIR2.2 ion Channel

Marien J.C. Houtman; Hiroki Takanari; Bart Kok; Margot B.Sc. van Eck; Denise R. Montagne; Marc A. Vos; Teun P. de Boer; Marcel A.G. van der Heyden

For many model organisms traditionally in use for cardiac electrophysiological studies, characterization of ion channel genes is lacking. We focused here on two genes encoding the inward rectifier current, KCNJ2 and KCNJ12, in the dog heart. A combination of RT-PCR, 5′-RACE, and 3′-RACE demonstrated the status of KCNJ2 as a two exon gene. The complete open reading frame (ORF) was located on the second exon. One transcription initiation site was mapped. Four differential transcription termination sites were found downstream of two consensus polyadenylation signals. The canine KCNJ12 gene was found to consist of three exons, with its ORF located on the third exon. One transcription initiation and one termination site were found. No alternative splicing was observed in right ventricle or brain cortex. The gene structure of canine KCNJ2 and KCNJ12 was conserved amongst other vertebrates, while current GenBank gene annotation was determined as incomplete. In silico translation of KCN12 revealed a non-conserved glycine rich stretch located near the carboxy-terminus of the KIR2.2 protein. However, no differences were observed when comparing dog with human KIR2.2 protein upon ectopic expression in COS-7 or HEK293 cells with respect to subcellular localization or electrophysiological properties.


Heart Rhythm | 2012

Relevance of calmodulin/CaMKII activation for arrhythmogenesis in the AV block dog

Vincent J.A. Bourgonje; Marieke Schoenmakers; Jet D.M. Beekman; Roel van der Nagel; Marien J.C. Houtman; Lars F. Miedema; Gudrun Antoons; Karin R. Sipido; Leon J. De Windt; Toon A.B. van Veen; Marc A. Vos

BACKGROUND The calcium-dependent signaling molecules calcineurin and calcium/calmodulin-dependent protein kinase II (CaMKII) both have been linked to decompensated hypertrophy and arrhythmias. CaMKII is also believed to be involved in acute modulation of ion channels. OBJECTIVE The purpose of this study was to determine the role of calcineurin and CaMKII in a dog model of compensated hypertrophy and a long QT phenotype. METHODS AV block was created in dogs to induce ventricular remodeling, including enhanced susceptibility to dofetilide-induced torsades de pointes arrhythmias. Dogs were treated with cyclosporin A for 3 weeks, which reduced calcineurin activity, as determined by mRNA expression levels of regulator of calcineurin 1 exon 4, but which was unable to prevent structural, contractile, or electrical remodeling and arrhythmias. Biopsies were taken before and at 2 or 9 weeks after AV block. Western blots were performed against phosphorylated and total CaMKII, phospholamban, Akt, and histone deacetylase 4 (HDAC4). RESULTS Chronic AV block showed an increase in Akt, CaMKII and phospholamban phosphorylation levels, but HDAC4 phosphorylation remained unaltered. Dofetilide induced torsades de pointes in vivo and early afterdepolarizations in cardiomyocytes, and increased [Ca(2+)](i) and CaMKII autophosphorylation. Both W-7 and KN-93 treatment counteracted this. CONCLUSION The calcineurin pathway seems not to be involved in long-term cardiac remodeling of the chronic AV block dog. Although CaMKII is chronically activated, this does not translate to HDAC4 phosphorylation. However, acute CaMKII overactivation is able to initiate arrhythmias based on triggered activity.

Collaboration


Dive into the Marien J.C. Houtman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc A. Vos

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc A. Vos

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Gudrun Antoons

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge